Specialisation and good reduction for algebras with involution
نویسنده
چکیده
Given a place between two fields, the isotropy behaviour of Azumaya algebras with involution over the valuation ring corresponding to the place is studied. In particular, it is shown that isotropic right ideals specialise in an appropriate way. The treatment is characteristic free, and it provides a natural analogue to the existing specialisation theory for non-singular symmetric bilinear forms. The rest of the paper then deals with the case where the residue characteristic is different from 2. In that case we show that if the valuation ring is Henselian then isotropy can be lifted from the residue field to the fraction field of the valuation ring, and this can then be used to show that rationally isomorphic Azumaya algebras with involution over this Henselian valuation ring are already isomorphic. This then implies there is a notion of good reduction with respect to places for algebras with involution, just as for non-singular symmetric bilinear forms.
منابع مشابه
Ultra and Involution Ideals in $BCK$-algebras
In this paper, we define the notions of ultra and involution ideals in $BCK$-algebras. Then we get the relation among them and other ideals as (positive) implicative, associative, commutative and prime ideals. Specially, we show that in a bounded implicative $BCK$-algebra, any involution ideal is a positive implicative ideal and in a bounded positive implicative lower $BCK$-semilattice, the not...
متن کاملAbstract structure of partial function $*$-algebras over semi-direct product of locally compact groups
This article presents a unified approach to the abstract notions of partial convolution and involution in $L^p$-function spaces over semi-direct product of locally compact groups. Let $H$ and $K$ be locally compact groups and $tau:Hto Aut(K)$ be a continuous homomorphism. Let $G_tau=Hltimes_tau K$ be the semi-direct product of $H$ and $K$ with respect to $tau$. We define left and right $tau$-c...
متن کاملQuasicompact and Riesz unital endomorphisms of real Lipschitz algebras of complex-valued functions
We first show that a bounded linear operator $ T $ on a real Banach space $ E $ is quasicompact (Riesz, respectively) if and only if $T': E_{mathbb{C}}longrightarrow E_{mathbb{C}}$ is quasicompact (Riesz, respectively), where the complex Banach space $E_{mathbb{C}}$ is a suitable complexification of $E$ and $T'$ is the complex linear operator on $E_{mathbb{C}}$ associated with $T$. Next, we pr...
متن کاملPfister Involutions
The question of the existence of an analogue, in the framework of central simple algebras with involution, of the notion of Pfister form is raised. In particular, algebras with orthogonal involution which split as a tensor product of quaternion algebras with involution are studied. It is proven that, up to degree 16, over any extension over which the algebra splits, the involution is adjoint to...
متن کاملNOTES ON REGULAR MULTIPLIER HOPF ALGEBRAS
In this paper, we associate canonically a precyclic mod- ule to a regular multiplier Hopf algebra endowed with a group-like projection and a modular pair in involution satisfying certain con- dition
متن کامل