Sub - problems of Heterogeneous Max - Cut Problems andApproximation

نویسندگان

  • Petros Drineas
  • Ravi Kannan
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sampling Sub-problems of Heterogeneous Max-cut Problems and Approximation Algorithms

Recent work in the analysis of randomized approximation algorithms for NP-hard optimization problems has involved approximating the solution to a problem by the solution of a related subproblem of constant size, where the subproblem is constructed by sampling elements of the original problem uniformly at random. In light of interest in problems with a heterogeneous structure, for which uniform ...

متن کامل

Sub-exponential Approximation Schemes for CSPs: From Dense to Almost Sparse

It has long been known, since the classical work of (Arora, Karger, Karpinski, JCSS 99), that Max-CUT admits a PTAS on dense graphs, and more generally, Max-k-CSP admits a PTAS on “dense” instances with Ω(n) constraints. In this paper we extend and generalize their exhaustive sampling approach, presenting a framework for (1−ε)-approximating any Max-k-CSP problem in sub-exponential time while si...

متن کامل

A sub-constant improvement in approximating the positive semidefinite Grothendieck problem

Semidefinite relaxations are a powerful tool for approximately solving combinatorial optimization problems such as MAX-CUT and the Grothendieck problem. By exploiting a bounded rank property of extreme points in the semidefinite cone, we make a sub-constant improvement in the approximation ratio of one such problem. Precisely, we describe a polynomial-time algorithm for the positive semidefinit...

متن کامل

Min-max and min-max regret versions of combinatorial optimization problems: A survey

Min-max and min-max regret criteria are commonly used to define robust solutions. After motivating the use of these criteria, we present general results. Then, we survey complexity results for the min-max and min-max regret versions of some combinatorial optimization problems: shortest path, spanning tree, assignment, min cut, min s-t cut, knapsack. Since most of these problems are NP -hard, we...

متن کامل

Relating max-cut problems and binary linear feasibility problems

This paper explores generalizations of the Goemans-Williamson randomization technique. It establishes a simple equivalence of binary linear feasibility problems and max-cut problems and presents an analysis of the semidefinite max-cut relaxation for the case of a single linear equation. Numerical examples for feasible random binary problems indicate that the randomization technique is efficient...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004