Modelling and verification for DNA nanotechnology
نویسنده
چکیده
DNA nanotechnology is a rapidly developing field that creates nanoscale devices from DNA, which enables novel interfaces with biological material. Their therapeutic use is envisioned and applications in other areas of basic science have already been found. These devices function at physiological conditions and, owing to their molecular scale, are subject to thermal fluctuations during both preparation and operation of the device. Troubleshooting a failed device is often difficult and we develop models to characterise two separate devices: DNA walkers and DNA origami. Our framework is that of continuous-time Markov chains, abstracting away much of the underlying physics. The resulting models are coarse but enable analysis of system-level performance, such as ‘the molecular computation eventually returns the correct answer with high probability’. We examine the applicability of probabilistic model checking to provide guarantees on the behaviour of nanoscale devices, and to this end we develop novel model checking methodology. We model a DNA walker that autonomously navigates a series of junctions, and we derive design principles that increase the probability of correct computational output. We also develop a novel parameter synthesis method for continuous-time Markov chains, for which the synthesised models guarantee a predetermined level of performance. Finally, we develop a novel discrete stochastic assembly model of DNA origami from first principles. DNA origami is a widespread method for creating nanoscale structures from DNA. Our model qualitatively reproduces experimentally observed behaviour and using the model we are able to rationally steer the folding pathway of a novel polymorphic DNA origami tile, controlling the eventual shape.
منابع مشابه
Modelling and Test Verification of Suspension Optimal Damping Ratio for Electric Vehicles Considering Occupant-cushion and In-wheel Motor Effects
The damping ratio of chassis suspension is a key parameter for damping matching of in-wheel motor vehicles (IWMVs). Because the motor is attached to the driving wheel, the initial design method of the damping ratio for traditional cars is not entirely suitable for IWMVs. This paper proposes an innovative initial design method of the damping ratio for IWMVs. Firstly, a traveling vibration model ...
متن کاملParentage Verification of Iranian Caspian Horse Using Microsatellites Markers
The present study was to construct a parentage verification system for Iranian Caspian horse. A total number of 45 Caspian horse samples including 14 foals for parentage verification, 17 stallion and 14 mare for individual identification were genotyped. Genomic DNA was extracted from whole blood and the genotype were analysed by PCR procedure and using 7 microsatellite markers (AHT04, HMS03, HM...
متن کاملEngineering and Verifying Requirements for Programmable Self-Assembling Nanomachines (NIER Track)
We propose an extension of van Lamsweerde’s goal-oriented requirements engineering to the domain of programmable DNA nanotechnology. This is a domain in which individual devices (agents) are at most a few dozen nanometers in diameter. These devices are programmed to assemble themselves from molecular components and perform their assigned tasks. The devices carry out their tasks in the probabili...
متن کاملVerification of a Quality Management Theory: Using a Delphi Study
Background A model of quality management called Strategic Collaborative Quality Management (SCQM) model was developed based on the quality management literature review, the findings of a survey on quality management assessment in healthcare organisations, semi-structured interviews with healthcare stakeholders, and a Delphi study on healthcare quality management experts. The purpose of this stu...
متن کاملDiamondoids and DNA Nanotechnologies
Diamondoids are cage-like saturated hydrocarbons consisting of fused cyclohexane rings. The Diamondoids family of compounds is one of the best candidates for molecular building blocks (MBBs) in nanotechnology to construct organic nanostructures compared to other MBBs known so far. The challenge is to find a route for self-assembly of these cage hydrocarbons and their applications in the bottom-...
متن کامل