Mechanisms underlying the volume regulation of interstitial fluid by capillaries: a simulation study

نویسندگان

  • Yukiko Himeno
  • Masayuki Ikebuchi
  • Akitoshi Maeda
  • Akinori Noma
  • Akira Amano
چکیده

BACKGROUND Control of the extracellular fluid volume is one of the most indispensable issues for homeostasis of the internal milieu. However, complex interdependence of the pressures involved in determination of fluid exchange makes it difficult to predict a steady-state tissue volume under various physiological conditions without mathematical approaches. METHODS Here, we developed a capillary model based on the Starling's principle, which allowed us to clarify the mechanisms of the interstitial-fluid volume regulation. Three well known safety factors against edema: (1) low tissue compliance in negative pressure ranges; (2) lymphatic flow driven by the tissue pressure; and (3) protein washout by the lymph, were incorporated into the model in sequence. RESULTS An increase in blood pressure at the venous end of the capillary induced an interstitial-fluid volume increase, which, in turn, reduced negative tissue pressure to prevent edema. The lymphatic flow alleviated the edema by both carrying fluid away from the tissue and decreasing the colloidal osmotic pressure. From the model incorporating all three factors, we found that the interstitial-fluid volume changed quickly after the blood pressure change, and that the protein movement towards a certain equilibrium point followed the volume change. CONCLUSION Mathematical analyses revealed that the system of the capillary is stable near the equilibrium point at steady state and normal physiological capillary pressure. The time course of the tissue-volume change was determined by two kinetic mechanisms: rapid fluid exchange and slow protein fluxes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evaluation of Recirculation Time in Bubble Train Flow by Using Direct Numerical Simulation

In this research, hydrodynamics of the Bubble Train Flows (BTF) in circular capillaries has been investigated by Direct Numerical Simulation (DNS).The Volume of Fluid Based (VOF) interface tracking method and streamwise direction periodic boundary conditions has been applied. The results show that there exists an appropriate agreement between DNS and experimental correlation results. The re...

متن کامل

Alterations in Fluids, Electrolytes, and Acid-Base Balance

Composition and Compartmental Distribution of Body Fluids Introductory Concepts Diffusion and Osmosis Compartmental Distribution of Body Fluids Intracellular Fluid Volume Extracellular Fluid Volume Capillary/Interstitial Fluid Exchange Edema Third-Space Accumulation Sodium and Water Balance Regulation of Sodium and Water Balance Regulation of Sodium Balance Regulation of Water Balance Alteratio...

متن کامل

Lymphatic endothelium: morphological, molecular and functional properties

The lymphatic microvasculature is uniquely adapted for the continuous removal of interstitial fluid and proteins, and is an important point of entry for leukocytes and tumor cells. The traditional view that lymphatic capillaries are passive participants in these tasks is currently being challenged. This overview highlights recent advances in our understanding of the molecular mechanisms underly...

متن کامل

Aquaporin-4 Functionality and Virchow-Robin Space Water Dynamics: Physiological Model for Neurovascular Coupling and Glymphatic Flow

The unique properties of brain capillary endothelium, critical in maintaining the blood-brain barrier (BBB) and restricting water permeability across the BBB, have important consequences on fluid hydrodynamics inside the BBB hereto inadequately recognized. Recent studies indicate that the mechanisms underlying brain water dynamics are distinct from systemic tissue water dynamics. Hydrostatic pr...

متن کامل

Interstitial Fluid Flow: The Mechanical Environment of Cells and Foundation of Meridians

Using information from the deep dissection, microobservation, and measurement of acupoints in the upper and lower limbs of the human body, we developed a three-dimensional porous medium model to simulate the flow field using FLUENT software and to study the shear stress on the surface of interstitial cells (mast cells) caused by interstitial fluid flow. The numerical simulation results show the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 5  شماره 

صفحات  -

تاریخ انتشار 2016