An Automated Confocal Micro-Extensometer Enables in Vivo Quantification of Mechanical Properties with Cellular Resolution.
نویسندگان
چکیده
How complex developmental-genetic networks are translated into organs with specific 3D shapes remains an open question. This question is particularly challenging because the elaboration of specific shapes is in essence a question of mechanics. In plants, this means how the genetic circuitry affects the cell wall. The mechanical properties of the wall and their spatial variation are the key factors controlling morphogenesis in plants. However, these properties are difficult to measure and investigating their relation to genetic regulation is particularly challenging. To measure spatial variation of mechanical properties, one must determine the deformation of a tissue in response to a known force with cellular resolution. Here, we present an automated confocal micro-extensometer (ACME), which greatly expands the scope of existing methods for measuring mechanical properties. Unlike classical extensometers, ACME is mounted on a confocal microscope and uses confocal images to compute the deformation of the tissue directly from biological markers, thus providing 3D cellular scale information and improved accuracy. Additionally, ACME is suitable for measuring the mechanical responses in live tissue. As a proof of concept, we demonstrate that the plant hormone gibberellic acid induces a spatial gradient in mechanical properties along the length of the Arabidopsis thaliana hypocotyl.
منابع مشابه
Collimator-detector response compensation in molecular SPECT reconstruction using STIR framework
Introduction:It is well-recognized that collimator-detector response (CDR) is the main image blurring factor in SPECT. In this research, we compensated the images for CDR in molecular SPECT by using STIR reconstruction framework. Methods: To assess resolution recovery capability of the STIR, a phantom containing five point sources along with a micro Derenzo p...
متن کاملTowards Automated Visual Inspection and Classification of Micro-Parts
The mechanical manufacturing of micro-parts is a challenging field of research. Because of high quality requirements and small tolerances, manufacturing processes have to be very stable and precise. In order to achieve high precision a suitable quality assurance concept is required. Only measured features can be used for statistical process control (SPC). Therefore, this paper presents a concep...
متن کاملQuantification of Lung Fibrosis and Emphysema in Mice Using Automated Micro-Computed Tomography
BACKGROUND In vivo high-resolution micro-computed tomography allows for longitudinal image-based measurements in animal models of lung disease. The combination of repetitive high resolution imaging with fully automated quantitative image analysis in mouse models of lung fibrosis lung benefits preclinical research. This study aimed to develop and validate such an automated micro-computed tomogra...
متن کاملA Pulse Coupled Neural Network Segmentation Algorithm for Reflectance Confocal Images of Epithelial Tissue
Automatic segmentation of nuclei in reflectance confocal microscopy images is critical for visualization and rapid quantification of nuclear-to-cytoplasmic ratio, a useful indicator of epithelial precancer. Reflectance confocal microscopy can provide three-dimensional imaging of epithelial tissue in vivo with sub-cellular resolution. Changes in nuclear density or nuclear-to-cytoplasmic ratio as...
متن کاملVariations of the Normal Human Limbal Stem Cells Detected by In Vivo Confocal Microscopy
Background To report normal variations of the limbal structures using in vivo laser scanning confocal microscopy. Methods: This was a retrospective study of fourteen eyes from 11 healthy individuals. Confocal imaging of cornea and limbus was performed using Heidelberg Retina Tomograph III Rostock Corneal Module. Results: The typical structure of the palisades of Vogt (POV) was detected ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 29 12 شماره
صفحات -
تاریخ انتشار 2017