A two-step, fourth-order method with energy preserving properties

نویسندگان

  • Luigi Brugnano
  • Felice Iavernaro
  • Donato Trigiante
چکیده

We introduce a family of fourth-order two-step methods that preserve the energy function of canonical polynomial Hamiltonian systems. As is the case with linear mutistep and one-leg methods, a prerogative of the new formulae is that the associated nonlinear systems to be solved at each step of the integration procedure have the very same dimension of the underlying continuous problem. The key tools in the new methods are the line integral associated with a conservative vector field (such as the one defined by a Hamiltonian dynamical system) and its discretization obtained by the aid of a quadrature formula. Energy conservation is equivalent to the requirement that the quadrature is exact, which turns out to be always the case in the event that the Hamiltonian function is a polynomial and the degree of precision of the quadrature formula is high enough. The non-polynomial case is also discussed and a number of test problems are finally presented in order to compare the behavior of the newmethods to the theoretical results. © 2012 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

NON-POLYNOMIAL SPLINE SOLUTIONS FOR SPECIAL NONLINEAR FOURTH-ORDER BOUNDARY VALUE PROBLEMS

We present a sixth-order non-polynomial spline method for the solutions of two-point nonlinear boundary value problem u(4)+f(x,u)=0, u(a)=α1, u''(a)= α2, u(b)= β1,u''(b)= β2, in off step points. Numerical method of sixth-order with end conditions of the order 6 is derived. The convergence analysis of the method has been discussed. Numerical examples are presented to illustrate the applications ...

متن کامل

A new two-step Obrechkoff method with vanished phase-lag and some of its derivatives for the numerical solution of radial Schrodinger equation and related IVPs with oscillating solutions

A new two-step implicit linear Obrechkoff twelfth algebraic order method with vanished phase-lag and its first, second, third and fourth derivatives is constructed in this paper. The purpose of this paper is to develop an efficient algorithm for the approximate solution of the one-dimensional radial Schrodinger equation and related problems. This algorithm belongs in the category of the multist...

متن کامل

Analysis of Fourth-order Accurate Symmetry-preserving Boundary Conditions for the Incompressible Navier-stokes Equations

Abstract. In this paper we investigate symmetry-preserving boundary conditions for a fourth-order symmetry-preserving finite volume method, to able to do accurate turbulence simulations for wind-turbine wake applications. It is found that the use of Dirichlet conditions limits the fourth-order method to (at most) second order. However, on properly chosen non-uniform grids, fourth-order behavior...

متن کامل

Stability of the fourth order Runge-Kutta method for time-dependent partial differential equations

In this paper, we analyze the stability of the fourth order Runge-Kutta method for integrating semi-discrete approximations of time-dependent partial differential equations. Our study focuses on linear problems and covers general semi-bounded spatial discretizations. A counter example is given to show that the classical four-stage fourth order Runge-Kutta method can not preserve the one-step st...

متن کامل

Optical Properties of ZnO Nanowires and Nanorods Synthesized by Two Step Oxidation Process

ZnO nanowires with a diameter of 70 nm and nanorods with a diameter in the range of 100-150 nm and two micrometer in length were grown on glass substrates by resistive evaporation method and applying a two step oxidation process at low temperatures, without using any catalyst, template or buffer layer. XRD pattern of these nanostructures indicated a good crystallinity property with wurtzite hex...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Computer Physics Communications

دوره 183  شماره 

صفحات  -

تاریخ انتشار 2012