The metric space of geodesic laminations on a surface II: small surfaces

نویسندگان

  • Francis Bonahon
  • Xiaodong Zhu
چکیده

We continue our investigation of the space of geodesic laminations on a surface, endowed with the Hausdorff topology. We determine the topology of this space for the once punctured torus and the 4–times punctured sphere. For these two surfaces, we also compute the Hausdorff dimension of the space of geodesic laminations, when it is endowed with the natural metric which, for small distances, is −1 over the logarithm of the Hausdorff metric. The key ingredient is an estimate of the Hausdorff metric between two simple closed geodesics in terms of their respective slopes. AMS Classification numbers Primary: 57M99, 37E35

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The metric space of geodesic laminations on a surface: I

We consider the space of geodesic laminations on a surface, endowed with the Hausdorff metric dH and with a variation of this metric called the dlog metric. We compute and/or estimate the Hausdorff dimensions of these two metrics. We also relate these two metrics to another metric which is combinatorially defined in terms of train tracks. AMS Classification numbers Primary: 57M99

متن کامل

Assessment of the Log-Euclidean Metric Performance in Diffusion Tensor Image Segmentation

Introduction: Appropriate definition of the distance measure between diffusion tensors has a deep impact on Diffusion Tensor Image (DTI) segmentation results. The geodesic metric is the best distance measure since it yields high-quality segmentation results. However, the important problem with the geodesic metric is a high computational cost of the algorithms based on it. The main goal of this ...

متن کامل

Shearing Hyperbolic Surfaces, Bending Pleated Surfaces and Thurston's Symplectic Form

The article develops a system of local holomorphic coordinates for the space of hyperbolic 3–manifolds with the fundamental group of a surface. These coordinates depend on the choice of a geodesic lamination on the surface, and are a complexified version of Thurston's shear coordinates for Teichmüller space. The imaginary part of these coordinates measures the bending of a pleated surface reali...

متن کامل

The Weil-petersson Hessian of Length on Teichmüller Space

We present a brief but nearly self-contained proof of a formula for the Weil-Petersson Hessian of the geodesic length of a closed curve (either simple or not simple) on a hyperbolic surface. The formula is the sum of the integrals of two naturally defined positive functions over the geodesic, proving convexity of this functional over Teichmuller space (due to Wolpert (1987)). We then estimate t...

متن کامل

Geodesic laminations and noncommutative geometry

Measured geodesic laminations is a remarkable abstraction (due to W. P. Thurston) of many otherwise unrelated phenomena occurring in differential geometry, complex analysis and geometric topology. In this article we focus on connections of geodesic laminations with the inductive limits of finite-dimensional semi-simple C∗-algebras (AF C∗-algebras). Our main result is a bijection between combina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003