Material-mediated proangiogenic factor release pattern modulates quality of regenerated blood vessels.

نویسندگان

  • Max H Rich
  • Min Kyung Lee
  • Kwanghyun Baek
  • Jae Hyun Jeong
  • Dong Hyun Kim
  • Larry J Millet
  • Rashid Bashir
  • Hyunjoon Kong
چکیده

Hydrogels designed to sustainably release bioactive molecules are extensively used to enhance tissue repair and regenerative therapies. Along this line, numerous efforts are made to control the molecular release rate and amount. In contrast, few efforts are made to control the molecular release pattern, and, subsequently, modulate the spatial organization of newly forming tissues, including blood vessels. Therefore, using a hydrogel printed to release vascular endothelial growth factor (VEGF) into a pre-defined pattern, this study demonstrates that spatial distribution of VEGF is important in guiding growth direction of new blood vessels, and also in retaining the structural integrity of pre-existing vasculature. Guided by a computational model, we fabricated a patch composed of micro-sized VEGF-releasing poly(ethylene glycol) diacrylate (PEGDA) hydrogel cylinders using an ink-jet printer. Interestingly, hydrogel printed with computationally optimized spacing created anisotropically aligned vasculature exclusively when the printed gel pattern was placed parallel to pre-existing blood vessels. In contrast, vascular sprouting from placing the printed gel pattern perpendicular to pre-existing vessels resulted in deformation and structural disintegration of the original vasculature. We envision that this study will be useful to better understand angiogenesis-modulated neovascularization and further improve the treatment quality for various wounds and tissue defects.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

PRE- AND POSTJUNCTIONAL α-ADRENOCEPTORS IN RABBIT ARTICULAR BLOOD VESSELS

Previous in vitro work on rabbit knee joint vessels showed that vasoconstrictor effects of nerve stimulation and administration of α-adrenoceptor agonists were mediated predominantly by α1-adrenoceptors5,9 The present experiments were performed to assess the nature of α-adrenoceptor subtypes within these blood vessels in vivo. Dose/response relationships for adrenaline and noradrenaline pr...

متن کامل

The Possible Involvement of Nitric Oxide/Endothelium Derived Relaxing Factor in Atropine-Induced Vasorelaxation

Atropine has been used to block cholinergic neurotransmission in basic research. Large doses of atropine cause vasodilation of the blood vessels in the skin. This effect is apparently unconnected with the antimuscarinic activity of atropine and seems to be due to a direct action on the blood vessels. It has been suggested that atropine blocks muscarinic receptors at low doses and it induces th...

متن کامل

Phosphorylation of endothelial nitric oxide synthase by atypical PKC zeta contributes to angiopoietin-1-dependent inhibition of VEGF-induced endothelial permeability in vitro.

Vascular endothelial growth factor (VEGF) is a potent angiogenic cytokine that also increases vascular permeability. Nitric oxide (NO) released from endothelial cells, after activation of endothelial NO synthase (eNOS), contributes to proangiogenic and permeability effects of VEGF. Angiopoietin-1 (Ang-1), via Tie2 receptors, shares many of the proangiogenic properties of VEGF on endothelial cel...

متن کامل

Phosphorylation of endothelial nitric oxide synthase by atypical PKC contributes to angiopoietin-1–dependent inhibition of VEGF-induced endothelial permeability in vitro

Vascular endothelial growth factor (VEGF) is a potent angiogenic cytokine that also increases vascular permeability. Nitric oxide (NO) released from endothelial cells, after activation of endothelial NO synthase (eNOS), contributes to proangiogenic and permeability effects of VEGF. Angiopoietin-1 (Ang-1), via Tie2 receptors, shares many of the proangiogenic properties of VEGF on endothelial cel...

متن کامل

Metalloproteinases, Mechanical Factors and Vascular Remodeling

Chronic increases in arterial blood flow elicit an adaptive response of the arterial wall, leading to vessel enlargement and reduction in wall shear stress to physiological baseline value. Release of nitric oxide from endothelial cells exposed to excessive shear is a fundamental step in the remodeling process, and potentially triggers a cascade of events, including growth factor induction and m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of controlled release : official journal of the Controlled Release Society

دوره 196  شماره 

صفحات  -

تاریخ انتشار 2014