Coupling SPH with a 1-D Boussinesq-type wave model

نویسندگان

  • Christophe Kassiotis
  • Martin Ferrand
  • Damien Violeau
  • Benedict D. Rogers
  • Peter K. Stansby
  • Michel Benoit
چکیده

The high computational cost of SPH remains problematic in dealing with wave propagation, especially when the domains considered are large. In order to overcome this difficulty, we propose to couple 2-D SPH with a 1-D Finite Difference Boussinesq-type model. The latter deals with wave propagations for most of the spatial domain, whereas SPH computations focus on the shoreline or close to off-shore structures, where a complex description of the free-surface is required. The re-use of existing codes is achieved using a generic implementation based on Component Technology. The communication between software is ensured by the middleware Component Template Library (CTL) [1], [2]. In order to deal with open domains, open-boundaries have to be implemented for SPH, with water height and velocity varying in space and time. These velocity and water height values are then driven by the Boussinesq-type model. As an illustration of the one way coupling, we present herein two simple examples of water waves, the first one with a flat bottom, the other one representing a schematic coastal protection.

منابع مشابه

GPU-SPH simulation of Tsunami-like wave interaction with a seawall associated with underwater

Investigation of the waves generated by underwater disturbances gives precious insight into the effect of man-made underwater explosions as well as natural phenomena, such as underwater volcanoes or oceanic meteor impact. On the other hand, prediction of the effects of such waves on the coastal installations and structures is required for preparation worthwhile criteria for coastal engineers to...

متن کامل

Numerical investigation of free surface flood wave and solitary wave using incompressible SPH method

Simulation of free surface flow and sudden wave profile are recognized as the most challenging problem in computational hydraulics. Several Eulerian/Lagrangian approaches and models can be implemented for simulating such phenomena in which the smoothed particle hydrodynamics method (SPH) is categorized as a proper candidate. The incompressible SPH (ISPH) method hires a precise incompressible hy...

متن کامل

The smoothed particle hydrodynamics method for solving generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system

A meshless numerical technique is proposed for solving the generalized variable coefficient Schrodinger equation and Schrodinger-Boussinesq system with electromagnetic fields. The employed meshless technique is based on a generalized smoothed particle hydrodynamics (SPH) approach. The spatial direction has been discretized with the generalized SPH technique. Thus, we obtain a system of ordinary...

متن کامل

BOUSSINESQ MODELING OF WAVE TRANSFORMATION , BREAKING , AND RUNUP . I : 1 D By Andrew

Parts I and II of this paper describe the extension and testing of two sets of Boussinesq-type equations to include surf zone phenomena. Part I is restricted to 1D tests of shoaling, breaking, and runup, while Part II deals with two horizontal dimensions. The model uses two main extensions to the Boussinesq equations: a momentum-conserving eddy viscosity technique to model breaking, and a ‘‘slo...

متن کامل

Development of Forward-wave Directional Couplers Loaded by Periodic Shunt Shorted Stubs

In this paper a new procedure for designing forward-wave directional couplers using periodic shunt short circuited stubs is proposed. A new type of cell using these stubs, which enlarge the phase difference between even- and odd modes of a uniform microstrip coupled line is introduced. Using the equivalent circuit model for even- and odd-modes of the proposed cell, the elements of the  ABCD tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

متن کامل
عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011