Comparison of Bootstrap and Jackknife Variance Estimators in Linear Regression: Second Order Results

نویسندگان

  • Arup Bose
  • Snigdhansu Chatterjee
چکیده

In an extension of the work of Liu and Singh (1992), we consider resampling estimates for the variance of the least squares estimator in linear regression models. Second order terms in asymptotic expansions of these estimates are derived. By comparing the second order terms, certain generalised bootstrap schemes are seen to be theoretically better than other resampling techniques under very general conditions. The performance of the different resampling schemes are studied through a few simulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bias, Precision, and Accuracy of Four Measures of Species Richness

Species richness is a widely used surrogate for the more complex concept of biological diversity. Because species richness is often central to ecological study and the establishment of conservation priorities, the biases and merits of richness measurements demand evaluation. The jackknife and bootstrap estimators can be used to compensate for the underestimation associated with simple richness ...

متن کامل

On the Second Order Behaviour of the Bootstrap of‎ L_1 Regression Estimators

We consider the second-order asymptotic properties of‎  ‎the bootstrap of L_1 regression estimators by looking at‎ ‎the difference between the L_1 estimator and ‎its first-order approximation‎, ‎where the latter‎ ‎is the minimizer of a quadratic approximation to the‎ ‎L_1 objective function‎. ‎It is shown that the bootstrap ‎distribution of the normed difference does not converge‎ ‎(eit...

متن کامل

An Empirical Comparison of Performance of the Unified Approach to Linearization of Variance Estimation after Imputation with Some Other Methods

Imputation is one of the most common methods to reduce item non_response effects. Imputation results in a complete data set, and then it is possible to use naϊve estimators. After using most of common imputation methods, mean and total (imputation estimators) are still unbiased. However their variances (imputation variances) are underestimated by naϊve variance estimators. Sampling mechanism an...

متن کامل

A Comparison of Jackknife Estimators ofVariance for GEE

Marginal regression modeling with generalised estimating equations became very popular in the last decade. While the mean structure is of primary interest in rst-order generalised estimating equations (GEE1), second-order generalised estimating equations (GEE2) allow the estimation of both the mean and the association structure. It has repeatedly been shown that the usual robust variance estima...

متن کامل

Higher Order Properties of Bootstrap and Jackknife Bias Corrected Maximum Likelihood Estimators

Pfanzagl and Wefelmeyer (1978) show that bias corrected ML estimators are higher order efficient. Their procedure however is computationally complicated because it requires integrating complicated functions over the distribution of the MLE estimator. The purpose of this paper is to show that these integrals can be replaced by sample averages without affecting the higher-order variance. We focus...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002