Hydrologic flow controls on biologic iron(III) reduction in natural sediments.
نویسندگان
چکیده
Bacterial reduction of a hematite-rich natural coastal sand was studied in flow-through column reactors at flow rates which varied from 0.62 to 11 pore volumes d(-1). Sand columns were wet-packed with the dissimilatory metal-reducing bacterium (DMRB) Shewanella putrefaciens CN32, and a PIPES-buffered, lactate-containing growth medium was pumped through the columns for over 20 days. Soluble Fe(II), acetate and lactate concentrations measured in the column effluents showed that steady-state conditions were established after a few days with every flow rate. The steady-state effluent Fe(II) concentration was directly controlled by the flow rate where [Fe(II)]ss decreased as the flow rate increased. Increased flow rate increased biologic activity based on the steady-state flux of soluble Fe(II) and total Fe(II) production (included Fe(II) extracted from sand at the conclusion of the experiment), decreased the fraction of lactate oxidized for energy that likely increased cell synthesis, and decreased the concentration of sorbed Fe(II) that, in turn, decreased the relative percentage of Fe(II) retained by the column materials. Increased biologic activity was likely promoted by greater reactant delivery (i.e., lactate, N, P) and greater advective removal of Fe(II). These results demonstrate that biologic Fe(II) reduction, cell growth, and abiotic Fe(II) sorption are all coupled to the hydrologic flow rate.
منابع مشابه
Electron shuttling via humic acids in microbial iron(III) reduction in a freshwater sediment.
The biological and chemical potential for electron shuttling via humic acids was evaluated by analyzing the depth distribution of humic-acid-reducing and iron-reducing bacteria in a freshwater sediment, and correlating it to the redox characteristics of humic acids and iron. Physicochemical analysis of profundal sediments of Lake Constance revealed a distinct stratification, with oxygen respira...
متن کاملContrasting Effects of Al Substitution on Microbial Reduction of Fe(III) (Hydr)oxides
Aluminum, one of the most abundant elements in soils and sediments, is commonly found co-precipitated with Fe in natural Fe(III) (hydr)oxides; yet, little is known about how Al substitution impacts bacterial Fe(III) reduction. Accordingly, we investigated the reduction of Al substituted (0–13 mol% Al) goethite, lepidocrocite, and ferrihydrite by the model dissimilatory Fe(III)-reducing bacteriu...
متن کاملChemical reduction of U(VI) by Fe(II) at the solid-water interface using natural and synthetic Fe(III) oxides.
Abiotic reduction of 0.1 mM U(VI) by Fe(II) in the presence of synthetic iron oxides (biogenic magnetite, goethite, and hematite) and natural Fe(III) oxide-containing solids was investigated in pH 6.8 artificial groundwater containing 10 mM NaHCO3. In most experiments, more than 95% of added U(VI) was sorbed to solids. U(VI) was rapidly and extensively (> or = 80%) reduced in the presence of sy...
متن کاملتأثیر سد کرخه بر الگوی پراکنش مکانی جنگل های کناررودی در پارک ملی کرخه
Effective river ecosystem management requires that the existing hydrologic regime be characterized in terms of the natural hydrologic regime and the degree to which the human-altered regime differs from natural conditions. This is known as Range of Variation Approach (RVA) and can be used for variation of stream flow, range of variation and appraisal of dam impacts on riparian zones. In this pa...
متن کاملImpact of Aeolian Dry Deposition of Reactive Iron Minerals on Sulfur Cycling in Sediments of the Gulf of Aqaba
The Gulf of Aqaba is an oligotrophic marine system with oxygen-rich water column and organic carbon-poor sediments (≤0.6% at sites that are not influenced by anthropogenic impact). Aeolian dust deposition from the Arabian, Sinai, and Sahara Deserts is an important source of sediment, especially at the deep-water sites of the Gulf, which are less affected by sediment transport from the Arava Des...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Environmental science & technology
دوره 41 4 شماره
صفحات -
تاریخ انتشار 2007