Translation Numbers of Groups Acting on Quasiconvex Spaces

نویسنده

  • GREGORY R. CONNER
چکیده

We define a group to be translation discrete if it carries a metric in which the translation numbers of the non-torsion elements are bounded away from zero. We define the notion of quasiconvex space which generalizes the notion of both CAT(0) and Gromov–hyperbolic spaces. We show that a cocompact group of isometries acting properly discontinuously cocompactly on a proper quasiconvex metric space is translation discrete if and only if it does not contain an essential Baumslag-Solitar quotient. It follows that if such a group is either biautomatic or residually finite then it is translation discrete.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Groups Acting on Quasiconvex Spaces and Translation Numbers

We prove that groups acting geometrically on δ-quasiconvex spaces contain no essential Baumslag-Solitar quotients as subgroups. This implies that they are translation discrete, meaning that the translation numbers of their nontorsion elements are bounded away from zero. The notion of translation numbers is used by many authors, such as J. Alonso and M. Bridson [1], G. Conner [2], S.M. Gersten a...

متن کامل

Indecomposable Groups Acting on Hyperbolic Spaces

We obtain a number of finiteness results for groups acting on hy-perbolic spaces and R-trees. In particular we show that a torsion-free locally quasiconvex hyperbolic group has only finitely many conjugacy classes of n-generated one-ended subgroups. We also prove an acylindrical accessibility theorem for groups acting on R-trees.

متن کامل

Almost simple groups with Socle $G_2(q)$ acting on finite linear spaces

 After the classification of the flag-transitive linear spaces, the attention has been turned to line-transitive linear spaces. In this article, we present a partial classification of the finite linear spaces $mathcal S$ on which an almost simple group $G$ with the socle $G_2(q)$ acts line-transitively.

متن کامل

Separation of Relatively Quasiconvex Subgroups

Suppose that all hyperbolic groups are residually finite. The following statements follow: In relatively hyperbolic groups with peripheral structures consisting of finitely generated nilpotent subgroups, quasiconvex subgroups are separable; Geometrically finite subgroups of non-uniform lattices in rank one symmetric spaces are separable; Kleinian groups are subgroup separable. We also show that...

متن کامل

Composition operators acting on weighted Hilbert spaces of analytic functions

In this paper, we considered composition operators on weighted Hilbert spaces of analytic functions and  observed that a formula for the  essential norm, gives a Hilbert-Schmidt characterization and characterizes the membership in Schatten-class for these operators. Also, closed range composition operators  are investigated.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998