Control Chart Pattern Recognition Using Artificial Neural Networks
نویسنده
چکیده
Precise and fast control chart pattern (CCP) recognition is important for monitoring process environments to achieve appropriate control and to produce high quality products. CCPs can exhibit six types of pattern: normal, cyclic, increasing trend, decreasing trend, upward shift and downward shift. Except for normal patterns, all other patterns indicate that the process being monitored is not functioning correctly and requires adjustment. This paper describes a new type of neural network for speeding up the training process and to compare three training algorithms in terms of speed, performance and parameter complexity for CCP recognition. The networks are multilayered perceptrons trained with a resilient propagation, backpropagation (BP) and extended delta-bar-delta algorithms. The recognition results of CCPs show the BP algorithm is accurate and provides better and faster results.
منابع مشابه
Pattern Recognition in Control Chart Using Neural Network based on a New Statistical Feature
Today for the expedition of the identification and timely correction of process deviations, it is necessary to use advanced techniques to minimize the costs of production of defective products. In this way control charts as one of the important tools for the statistical process control in combination with modern tools such as artificial neural networks have been used. The artificial neural netw...
متن کاملA Review of Artificial Neural Network Applications in Control Chart Pattern Recognition
On-line automated process analysis is an important area of research since it allows the interfacing of process control with computer integrated manufacturing (CIM) techniques. The inflexibility and high computational costs of traditional SPC pattern recognition methodologies have led researchers to investigate artificial neural network applications to control chart pattern recognition. This pap...
متن کاملUnsupervised adaptive resonance theory neural networks for control chart pattern recognition
This paper describes the use of unsupervised adaptive resonance theory ART2 neural networks for recognizing patterns in statistical process control charts. To improve the classi® cation accuracy, three schemes are proposed. The ® rst scheme involves using information on changes between consecutive points in a pattern. The second scheme modi® es the ART2 vigilance parameter during training. The ...
متن کاملControl Chart Pattern Recognition Using Wavelet Based Neural Networks
Control chart pattern recognition is one of the most important tools to identify the process state in statistical process control. The abnormal process state could be classified by the recognition of unnatural patterns that arise from assignable causes. In this study, a wavelet based neural network approach is proposed for the recognition of control chart patterns that have various characterist...
متن کاملA New Statistical Approach for Recognizing and Classifying Patterns of Control Charts (RESEARCH NOTE)
Control chart pattern (CCP) recognition techniques are widely used to identify the potential process problems in modern industries. Recently, artificial neural network (ANN) –based techniques are very popular to recognize CCPs. However, finding the suitable architecture of an ANN-based CCP recognizer and its training process are time consuming and tedious. In addition, because of the black box ...
متن کاملSteel Consumption Forecasting Using Nonlinear Pattern Recognition Model Based on Self-Organizing Maps
Steel consumption is a critical factor affecting pricing decisions and a key element to achieve sustainable industrial development. Forecasting future trends of steel consumption based on analysis of nonlinear patterns using artificial intelligence (AI) techniques is the main purpose of this paper. Because there are several features affecting target variable which make the analysis of relations...
متن کامل