The transcriptional activator Imp2p maintains ion homeostasis in Saccharomyces cerevisiae.

نویسندگان

  • J Y Masson
  • D Ramotar
چکیده

Yeast cells deficient in the transcriptional activator Imp2p are viable, but display marked hypersensitivity to a variety of oxidative agents. We now report that imp2 null mutants are also extremely sensitive to elevated levels of the monovalent ions, Na+ and Li+, as well as to the divalent ions Ca2+, Mn2+, Zn2+, and Cu2+, but not to Cd2+, Mg2+, Co2+, Ni2+, and Fe2+, as compared to the parent strain. We next searched for multicopy suppressor genes that would allow the imp2Delta mutant to grow under high salt conditions. Two genes that independently restored normal salt-resistance to the imp2Delta mutant, ENA1 and HAL3, were isolated. ENA1 encodes a P-type ion pump involved in monovalent ion efflux from the cell, while HAL3 encodes a protein required for activating the expression of Ena1p. Neither ENA1 nor HAL3 gene expression was positively regulated by Imp2p. Moreover, the imp2 ena1 double mutant was exquisitely sensitive to Na+/Li+ cations, as compared to either single mutant, implying that Imp2p mediates Na+/Li+ cation homeostasis independently of Ena1p.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Sko1p repressor and Gcn4p activator antagonistically modulate stress-regulated transcription in Saccharomyces cerevisiae.

In the transcriptional response of Saccharomyces cerevisiae to stress, both activators and repressors are implicated. Here we demonstrate that the ion homeostasis determinant, HAL1, is regulated by two antagonistically operating bZIP transcription factors, the Sko1p repressor and the Gcn4p activator. A single CRE-like sequence (CRE(HAL1)) at position -222 to -215 with the palindromic core seque...

متن کامل

The yeast Aft2 transcription factor determines selenite toxicity by controlling the low affinity phosphate transport system

The yeast Saccharomyces cerevisiae is employed as a model to study the cellular mechanisms of toxicity and defense against selenite, the most frequent environmental selenium form. We show that yeast cells lacking Aft2, a transcription factor that together with Aft1 regulates iron homeostasis, are highly sensitive to selenite but, in contrast to aft1 mutants, this is not rescued by iron suppleme...

متن کامل

Mechanism underlying the iron-dependent nuclear export of the iron-responsive transcription factor Aft1p in Saccharomyces cerevisiae.

Aft1p is an iron-responsive transcriptional activator that plays a central role in maintaining iron homeostasis in Saccharomyces cerevisiae. Aft1p is regulated primarily by iron-induced shuttling of the protein between the nucleus and cytoplasm, but its nuclear import is not regulated by iron. Here, we have shown that the nuclear export of Aft1p is promoted in the presence of iron and that Msn5...

متن کامل

Physiological and transcriptional responses to high concentrations of lactic acid in anaerobic chemostat cultures of Saccharomyces cerevisiae.

Based on the high acid tolerance and the simple nutritional requirements of Saccharomyces cerevisiae, engineered strains of this yeast are considered biocatalysts for industrial production of high-purity undissociated lactic acid. However, high concentrations of lactic acid are toxic to S. cerevisiae, thus limiting its growth and product formation. Physiological and transcriptional responses to...

متن کامل

A dual role for zinc fingers in both DNA binding and zinc sensing by the Zap1 transcriptional activator.

The Zap1 transcriptional activator of Saccharomyces cerevisiae controls zinc homeostasis. Zap1 induces target gene expression in zinc-limited cells and is repressed by high zinc. One such target gene is ZAP1 itself. In this report, we examine how zinc regulates Zap1 function. First, we show that transcriptional autoregulation of Zap1 is a minor component of zinc responsiveness; most regulation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 149 2  شماره 

صفحات  -

تاریخ انتشار 1998