Large-scale L-BFGS using MapReduce
نویسندگان
چکیده
L-BFGS has been applied as an effective parameter estimation method for various machine learning algorithms since 1980s. With an increasing demand to deal with massive instances and variables, it is important to scale up and parallelize L-BFGS effectively in a distributed system. In this paper, we study the problem of parallelizing the L-BFGS algorithm in large clusters of tens of thousands of shared-nothing commodity machines. First, we show that a naive implementation of L-BFGS using Map-Reduce requires either a significant amount of memory or a large number of map-reduce steps with negative performance impact. Second, we propose a new L-BFGS algorithm, called Vector-free L-BFGS, which avoids the expensive dot product operations in the two loop recursion and greatly improves computation efficiency with a great degree of parallelism. The algorithm scales very well and enables a variety of machine learning algorithms to handle a massive number of variables over large datasets. We prove the mathematical equivalence of the new Vector-free L-BFGS and demonstrate its excellent performance and scalability using real-world machine learning problems with billions of variables in production clusters.
منابع مشابه
Criterion for the Limited Memory BFGS Algorithm for Large Scale Nonlinear Optimization
This paper studies recent modi cations of the limited memory BFGS (L-BFGS) method for solving large scale unconstrained optimization problems. Each modi cation technique attempts to improve the quality of the L-BFGS Hessian by employing (extra) updates in certain sense. Because at some iterations these updates might be redundant or worsen the quality of this Hessian, this paper proposes an upda...
متن کاملExtra-Updates Criterion for the Limited Memory BFGS Algorithm for Large Scale Nonlinear Optimizatio
This paper studies recent modifications of the limited memory BFGS (L-BFGS) method for solving large scale unconstrained optimization problems. Each modification technique attempts to improve the quality of the L-BFGS Hessian by employing (extra) updates in a certain sense. Because at some iterations these updates might be redundant or worsen the quality of this Hessian, this paper proposes an ...
متن کاملModifications of the Limited Memory Bfgs Algorithm for Large-scale Nonlinear Optimization
In this paper we present two new numerical methods for unconstrained large-scale optimization. These methods apply update formulae, which are derived by considering different techniques of approximating the objective function. Theoretical analysis is given to show the advantages of using these update formulae. It is observed that these update formulae can be employed within the framework of lim...
متن کاملOn the limited memory BFGS method for large scale optimization
We study the numerical performance of a limited memory quasi Newton method for large scale optimization which we call the L BFGS method We compare its performance with that of the method developed by Buckley and LeNir which combines cyles of BFGS steps and conjugate direction steps Our numerical tests indicate that the L BFGS method is faster than the method of Buckley and LeNir and is better a...
متن کاملA Limited-Memory BFGS Algorithm Based on a Trust-Region Quadratic Model for Large-Scale Nonlinear Equations
In this paper, a trust-region algorithm is proposed for large-scale nonlinear equations, where the limited-memory BFGS (L-M-BFGS) update matrix is used in the trust-region subproblem to improve the effectiveness of the algorithm for large-scale problems. The global convergence of the presented method is established under suitable conditions. The numerical results of the test problems show that ...
متن کامل