Contribution of Pannexin1 to Experimental Autoimmune Encephalomyelitis

نویسندگان

  • Sarah E. Lutz
  • Estibaliz González-Fernández
  • Juan Carlos Chara Ventura
  • Alberto Pérez-Samartín
  • Leonid Tarassishin
  • Hiromitsu Negoro
  • Naman K. Patel
  • Sylvia O. Suadicani
  • Sunhee C. Lee
  • Carlos Matute
  • Eliana Scemes
چکیده

Pannexin1 (Panx1) is a plasma membrane channel permeable to relatively large molecules, such as ATP. In the central nervous system (CNS) Panx1 is found in neurons and glia and in the immune system in macrophages and T-cells. We tested the hypothesis that Panx1-mediated ATP release contributes to expression of Experimental Autoimmune Encephalomyelitis (EAE), an animal model for multiple sclerosis, using wild-type (WT) and Panx1 knockout (KO) mice. Panx1 KO mice displayed a delayed onset of clinical signs of EAE and decreased mortality compared to WT mice, but developed as severe symptoms as the surviving WT mice. Spinal cord inflammatory lesions were also reduced in Panx1 KO EAE mice during acute disease. Additionally, pharmacologic inhibition of Panx1 channels with mefloquine (MFQ) reduced severity of acute and chronic EAE when administered before or after onset of clinical signs. ATP release and YoPro uptake were significantly increased in WT mice with EAE as compared to WT non-EAE and reduced in tissues of EAE Panx1 KO mice. Interestingly, we found that the P2X7 receptor was upregulated in the chronic phase of EAE in both WT and Panx1 KO spinal cords. Such increase in receptor expression is likely to counterbalance the decrease in ATP release recorded from Panx1 KO mice and thus contribute to the development of EAE symptoms in these mice. The present study shows that a Panx1 dependent mechanism (ATP release and/or inflammasome activation) contributes to disease progression, and that inhibition of Panx1 using pharmacology or gene disruption delays and attenuates clinical signs of EAE.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pannexin1 Channels Are Required for Chemokine-Mediated Migration of CD4+ T Lymphocytes: Role in Inflammation and Experimental Autoimmune Encephalomyelitis.

Pannexin1 (Panx1) channels are large high conductance channels found in all vertebrates that can be activated under several physiological and pathological conditions. Our published data indicate that HIV infection results in the extended opening of Panx1 channels (5-60 min), allowing for the secretion of ATP through the channel pore with subsequent activation of purinergic receptors, which faci...

متن کامل

Immunomodulatory Effect of Mesenchymal Stem Cells in Multiple Sclerosis and Experimental Autoimmune Encephalomyelitis: A Review Study

Multiple Sclerosis (MS) is a chronic inflammatory and demyelinating disease of the central nervous system that may lead to disability of the patient. Current MS treatment regimens are still insufficient and research is conducted for developing more effective therapies capable of targeting neurodegeneration, inflammation, and demyelination. Recent results of experimental and clinical studies in ...

متن کامل

Inhibition of NR2B-Containing N-methyl-D-Aspartate Receptors (NMDARs) in Experimental Autoimmune Encephalomyelitis, a Model of Multiple Sclerosis

Neurodegeneration is the pathophysiological basis for permanent neurological disabilities in multiple sclerosis (MS); thus neuroprotection is emerging as a therapeutic approach in MS research. Modulation of excitotoxicity by inhibition of NMDARs has been suggested for neuroprotection, but selective antagonisation of the NR2B subtype of these receptors, a subtype believed to play a more pivotal ...

متن کامل

Liver Damage and Mortality in a Male Lewis Rat of Experimental Autoimmune Encephalomyelitis

Background and Objectives: Multiple sclerosis is an inflammatory disease of the central nervous system. This is due to migration of peripherally activated lymphocytes to central nervous system leading to inflammatory lesions. However, liver has an anti-inflammatory microenvironment. Myelin expression in the liver of transgenic mice suppresses inflammatory lesions within central nervous system. ...

متن کامل

Vitamin D Modulates the Expression of IL-27 and IL-33 in the Central Nervous System in Experimental Autoimmune Encephalomyelitis

Background: It has been reported that vitamin D has broad anti-inflammatory and immunomodulatory effects. Objective: To evaluate the effects of vitamin D on the expression of IL-27 and IL-33 in a model of experimental autoimmune encephalomyelitis (EAE). Methods: EAE was induced in C57BL/6 mice by immunization with myelin oligodendroglial glycoprotein mixed with complete Freund's adjuvant. The m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2013