Ultrafast optical switching of three-dimensional Si inverse opal photonic band gap crystals

نویسندگان

  • Tijmen G. Euser
  • Hong Wei
  • Jeroen Kalkman
  • Yoonho Jun
  • Albert Polman
  • David J. Norris
  • Willem L. Vos
چکیده

We present ultrafast optical switching experiments on three-dimensional photonic band gap crystals. Switching the Si inverse opal is achieved by optically exciting free carriers by a two-photon process. We probe reflectivity in the frequency range of second order Bragg diffraction where the photonic band gap is predicted. We find good experimental switching conditions for free-carrier plasma frequencies between 0.3 and 0.7 times the optical frequency : we thus observe a large frequency shift of up to / =1.5% of all spectral features including the peak that corresponds to the photonic band gap. We deduce a corresponding large refractive index change of nSi /nSi =2.0%, where nSi is the refractive index of the silicon backbone of the crystal. The induced absorption length is longer than the sample thickness. We observe a fast decay time of 21 ps, which implies that switching could potentially be repeated at GHz rates. Such a high switching rate is relevant to future switching and modulation applications. © 2007 American Institute of Physics. DOI: 10.1063/1.2777134

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Broadband sensitive pump-probe setup for ultrafast optical switching of photonic nanostructures and semiconductors.

We describe an ultrafast time resolved pump-probe spectroscopy setup aimed at studying the switching of nanophotonic structures. Both femtosecond pump and probe pulses can be independently tuned over broad frequency range between 3850 and 21,050 cm(-1). A broad pump scan range allows a large optical penetration depth, while a broad probe scan range is crucial to study strongly photonic crystals...

متن کامل

Design and Analysis of a Novel Hexagonal Shaped Channel Drop Filter Based on Two-Dimensional Photonic Crystals

In this paper a new optical channel drop filter (CDF) based on two dimensional (2-D) photonic crystals (PhC) with hexagonal shaped structure is proposed and numerically demonstrated by using the finite-difference-time-domain (FDTD) and plane-wave-expansion (PWE) techniques. Photonic crystals (PhCs) are artificial dielectric nanostructure materials in which a periodic modulation of the material ...

متن کامل

Electrodeposited 3D Tungsten Photonic Crystals with Enhanced Thermal Stability

Photonic band gaps can emerge when materials are periodically organized with characteristic dimensions on the order of the wavelength of light. Such materials are commonly known as photonic crystals. Proposed applications for photonic crystals include a wide range of functional optical devices including lowloss optical fibers, three-dimensional waveguides, zero-threshold lasers, sensors, and en...

متن کامل

Fragility of photonic band gaps in inverse-opal photonic crystals

Inverse-opal techniques provide a promising routine of fabricating photonic crystals with a full band gap in the visible and infrared regimes. Numerical simulations of band structures of such systems by means of a supercell technique demonstrate that this band gap is extremely fragile to the nonuniformity in crystals. In the presence of disorder such as variations in the radii of air spheres an...

متن کامل

A Novel Structure for Optical Channel Drop Filter using Two-Dimensional Photonic Crystals with Square Lattice

In the present paper a novel structure for optical channel drop filter (CDF) based on photonic crystal ring resonator with circular core has been proposed. In order to design the proposed CDF, the plan wave expansion (PWE) method is applied for calculation of band structure and photonic band gap while the transmission characteristics of proposed CDF have been calculated using the finite differe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007