On the size of the largest empty box amidst a point set
نویسندگان
چکیده
The problem of finding the largest empty axis-parallel box amidst a point configuration is a classical problem in computational complexity theory. It is known that the volume of the largest empty box is of asymptotic order 1/n for n → ∞ and fixed dimension d. However, it is natural to assume that the volume of the largest empty box increases as d gets larger. In the present paper we prove that this actually is the case: for every set of n points in [0, 1] there exists an empty box of volume at least cdn , where cd → ∞ as d → ∞. More precisely, cd is at least of order roughly log d.
منابع مشابه
Perfect vector sets, properly overlapping partitions, and largest empty box
We revisit the following problem (along with its higher dimensional variant): Given a set S of n points inside an axis-parallel rectangle U in the plane, find a maximum-area axis-parallel sub-rectangle that is contained in U but contains no points of S. (I) We present an algorithm that finds a large empty box amidst n points in [0, 1]: a box whose volume is at least log d 4(n+log d) can be comp...
متن کاملMaximal Empty Boxes Amidst Random Points
We show that the expected number of maximal empty axis-parallel boxes amidst n random points in the unit hypercube [0, 1] in R is (1±o(1)) (2d−2)! (d−1)! n ln d−1 n, if d is fixed. This estimate is relevant for analyzing the performance of exact algorithms for computing the largest empty axis-parallel box amidst n given points in an axis-parallel box R, especially the algorithms that proceed by...
متن کاملOn the Number of Maximum Empty Boxes Amidst n Points
We revisit the following problem (along with its higher dimensional variant): Given a set S of n points inside an axis-parallel rectangle U in the plane, find a maximum-area axis-parallel sub-rectangle that is contained in U but contains no points of S. 1. We prove that the number of maximum-area empty rectangles amidst n points in the plane is O(n logn 2α(n)), where α(n) is the extremely slowl...
متن کاملOn the number of maximum empty boxes
We revisit the following problem (along with its higher dimensional variant): Given a set S of n points inside an axis-parallel rectangle U in the plane, find a maximum-area axis-parallel sub-rectangle that is contained in U but contains no points of S. (I) We prove that the number of maximum-area empty rectangles amidst n points in the plane is O(n log n 2), where α(n) is the extremely slowly ...
متن کاملLargest Empty Axis-Parallel Rectangular Annulus
In Euclidean plane, a rectangular annulus is the region between parallel rectangles such that the smaller rectangle lies wholly inside the outer rectangle. Given a set P of n points in the two dimensional plane, we propose O(n) time and O(n) space algorithm to identify an axis-parallel largest empty annulus amidst the points of P . We are not aware of any published work on this problem. To the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Discrete Applied Mathematics
دوره 230 شماره
صفحات -
تاریخ انتشار 2017