Cauchy Problem for Dispersive Equations in Α-modulation Spaces

نویسندگان

  • QIANG HUANG
  • JIECHENG CHEN
چکیده

In this article, we consider the Cauchy problem for dispersive equations in α-Modulation spaces. For this purpose, we find a method for estimating uk in α-modulation spaces when k is not an integer, and develop a Strichartz estimate in M p,q which is based on semigroup estimates. In the local case, we that the domain of p is independent of α, which is also the case in the Modulation spaces and in the Besov space.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Well-posedness of Nonlinear Dispersive Equations on Modulation Spaces

By using tools of time-frequency analysis, we obtain some improved local well-posedness results for the NLS, NLW and NLKG equations with Cauchy data in modulation spaces M 0,s .

متن کامل

. A P ] 6 A pr 2 00 7 LOCAL WELL - POSEDNESS OF NONLINEAR DISPERSIVE EQUATIONS ON MODULATION SPACES

By using tools of time-frequency analysis, we obtain some improved local well-posedness results for the NLS, NLW and NLKG equations with Cauchy data in modulation spaces M 0,s.

متن کامل

Bifurcation diagram of a one-parameter family of dispersive waves

The Korteweg de Vries (KdV) equation with small dispersion is a model for the formation and propagation of dispersive shock waves in one dimension. Dispersive shock waves in KdV are characterized by the appearance of zones of rapid modulated oscillations in the solution of the Cauchy problem with smooth initial data. The modulation in time and space of the amplitudes, the frequencies and the wa...

متن کامل

On the Cauchy problem for higher-order nonlinear dispersive equations

We study the higher-order nonlinear dispersive equation ∂tu+ ∂ 2j+1 x u = ∑ 0≤j1+j2≤2j aj1,j2∂ j1 x u∂ j2 x u, x, t ∈ R. where u is a real(or complex-) valued function. We show that the associated initial value problem is well posed in weighted Besov and Sobolev spaces for small initial data. We also prove ill-posedness results when a0,k 6= 0 for some k > j, in the sense that this equation cann...

متن کامل

Wellposedness of Cauchy problem for the Fourth Order Nonlinear Schrödinger Equations in Multi-dimensional Spaces

We study the well-posedness of Cauchy problem for the fourth order nonlinear Schrödinger equations i∂t u=−ε u+ 2u+ P (( ∂ x u ) |α| 2, ( ∂ x ū ) |α| 2 ) , t ∈R, x ∈Rn, where ε ∈ {−1,0,1}, n 2 denotes the spatial dimension and P(·) is a polynomial excluding constant and linear terms. © 2006 Elsevier Inc. All rights reserved.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014