Synthetic receptors as models for alkali metal cation-pi binding sites in proteins.
نویسندگان
چکیده
The alkali metal cations Na(+) and K(+) have several important physiological roles, including modulating enzyme activity. Recent work has suggested that alkali metal cations may be coordinated by pi systems, such as the aromatic amino acid side chains. The ability of K(+) to interact with an aromatic ring has been assessed by preparing a family of synthetic receptors that incorporate the aromatic side chains of phenylalanine, tyrosine, and tryptophan. These receptors are constructed around a diaza-18-crown-6 scaffold, which serves as the primary binding site for an alkali metal cation. The ability of the aromatic rings to coordinate a cation was determined by crystallizing each of the receptors in the presence of K(+) and by solving the solid state structures. In all cases, complexation of K(+) by the pi system was observed. When possible, the structures of the unbound receptors also were determined for comparison. Further proof that the aromatic ring makes an energetically favorable interaction with the cation was obtained by preparing a receptor in which the arene was perfluorinated. Fluorination of the arene reverses the electrostatics, but the aromaticity is maintained. The fluorinated arene rings do not coordinate the cation in the solid state structure of the K(+) complex. Thus, the results of the predicted electrostatic reversal were confirmed. Finally, the biological implications of the alkali metal cation-pi interaction are addressed.
منابع مشابه
Cryptates: Macropolycyclic Inclusion Complexes
Macropolycyclic ligands containing appropriate binding sites and cavities of suitable size and shape, may be designed so as to display molecular recognition in the formation of selective inclusion complexes, cryptates, with metal cations, but also with anions and molecules. Macrobicyclic ligands B form highly stable and selective alkali and alkaline-earth cryptates, displaying a pronounced cryp...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملNovel Small Molecules against Two Binding Sites of Wnt2 Protein as potential Drug Candidates for Colorectal Cancer: A Structure Based Virtual Screening Approach
Wnts are the major ligands responsible for activating Wnt signaling pathway through binding to Frizzled proteins (Fzd) as the receptors. Among these ligands, Wnt2 plays the main role in the tumorigenesis of several human cancers especially colorectal cancer (CRC). Therefore, it can be considered as a potential drug target.The aim of this study was to identify potential drug candidates ...
متن کاملIsolation and Structural Characterization of Alkali and Alkaline Earth Metal Salts with Synthetic Non Cyclic Ionophores
In the present study, an investigation on the complex formation between mono- and divalent metal ions (Na+, K+, Li+ and Mg2+) in the form of salt with different podands using various solvents has been carried out. Isolated complexes were characterized by different spectroscopic techniques viz. IR, NMR and elemental analysis. On the basis of ...
متن کاملBiochemical characterization of P-type copper ATPases
Copper ATPases, in analogy with other members of the P-ATPase superfamily, contain a catalytic headpiece including an aspartate residue reacting with ATP to form a phosphoenzyme intermediate, and transmembrane helices containing cation-binding sites [TMBS (transmembrane metal-binding sites)] for catalytic activation and cation translocation. Following phosphoenzyme formation by utilization of A...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 97 12 شماره
صفحات -
تاریخ انتشار 2000