Regulation of serotonin 1B receptor by glycogen synthase kinase-3.
نویسندگان
چکیده
In response to 5-hydroxytryptamine (5-HT), the type 1 serotonin receptors (5-HT1Rs) preferentially couple to the inhibitory G protein and elicit many physiological and behavioral processes. However, their regulation by intracellular protein kinases has not been fully investigated. In this study, we identified that glycogen synthase kinase-3 (GSK3) differentially regulates 5-HT1Rs. In receptor-expressing cells and brain slices, activation of both 5-HT1AR and 5-HT1BR reduced forskolin-stimulated cAMP production, but only the effect of 5-HT1BR was abolished by selective GSK3 inhibitors, deletion of GSK3beta by RNAi, or overexpression of impaired GSK3beta mutants (R96A and K85,86A). A consensus GSK3 phosphorylation sequence was identified between the serine-154 and threonine-158 in the second intracellular loop of 5-HT1BR. Mutation of either serine-154 or threonine-158 to alanine significantly reduced response of 5-HT1BR to 5-HT. Active GSK3beta interacted with resting 5-HT1BR to form a protein complex. The interaction was enhanced by receptor activation, abolished by GSK3 inhibitors, and dependent on the phosphorylation state of serine-154. In addition, regulation of 5-HT1BR by GSK3 changed the dynamics of agonist-induced cell surface receptor internalization, in which lack of phosphorylation at Ser154 resulted in sustained reduction of 5-HT1BR at the cell surface. Although the physiological consequences of selective regulation of 5-HT1BR by GSK3 remain to be identified, findings in this study reveal a new function of GSK3 as a protein kinase that is able to selectively regulate G protein-coupled receptors.
منابع مشابه
Glycogen Synthase Kinase-3 is an Intermediate Modulator of Serotonin Neurotransmission
Serotonin is a neurotransmitter with broad functions in brain development, neuronal activity, and behaviors; and serotonin is the prominent drug target in several major neuropsychiatric diseases. The multiple actions of serotonin are mediated by diverse serotonin receptor subtypes and associated signaling pathways. However, the key signaling components that mediate specific function of serotoni...
متن کاملSerotonin Modulates Circadian Entrainment in Drosophila
Entrainment of the Drosophila circadian clock to light involves the light-induced degradation of the clock protein timeless (TIM). We show here that this entrainment mechanism is inhibited by serotonin, acting through the Drosophila serotonin receptor 1B (d5-HT1B). d5-HT1B is expressed in clock neurons, and alterations of its levels affect molecular and behavioral responses of the clock to ligh...
متن کاملGlycogen synthase kinase-3β is a functional modulator of serotonin-1B receptors.
Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase that is involved in neuronal regulation and is a potential pharmacological target of neurological disorders. We found previously that GSK3β selectively interacts with 5-hydroxytryptamine-1B receptors (5-HT1BR) that have important functions in serotonin neurotransmission and behavior. In this study, we provide new inform...
متن کاملThe Effects of Glycogen Synthase Kinase-3beta in Serotonin Neurons
Glycogen synthase kinase-3 (GSK3) is a constitutively active protein kinase in brain. Increasing evidence has shown that GSK3 acts as a modulator in the serotonin neurotransmission system, including direct interaction with serotonin 1B (5-HT1B) receptors in a highly selective manner and prominent modulating effect on 5-HT1B receptor activity. In this study, we utilized the serotonin neuron-sele...
متن کاملInteractome mapping of the phosphatidylinositol 3-kinase-mammalian target of rapamycin pathway identifies deformed epidermal autoregulatory factor-1 as a new glycogen synthase kinase-3 interactor.
The phosphatidylinositol 3-kinase-mammalian target of rapamycin (PI3K-mTOR) pathway plays pivotal roles in cell survival, growth, and proliferation downstream of growth factors. Its perturbations are associated with cancer progression, type 2 diabetes, and neurological disorders. To better understand the mechanisms of action and regulation of this pathway, we initiated a large scale yeast two-h...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular pharmacology
دوره 76 6 شماره
صفحات -
تاریخ انتشار 2009