Antimony-resistant clinical isolates of Leishmania donovani are susceptible to paromomycin and sitamaquine.
نویسندگان
چکیده
Widespread antimonial resistance in anthroponotic visceral leishmaniasis (VL) makes it critical to monitor the susceptibility of prevailing field isolates to upcoming antileishmanials in order to frame the right treatment policies to protect these drugs against development of resistance. We aimed to generate the baseline data on natural in vitro susceptibility to paromomycin and sitamaquine in Leishmania donovani field isolates from VL patients (n = 20) coming from zones of varying sodium antimony gluconate (SAG) resistance. We further monitored nitric oxide (NO) release in infected macrophages treated with these drugs. Field isolates exhibited variable sensitivity to paromomycin and sitamaquine with respective mean 50% effective dose (ED₅₀) values ± standard error of the mean (SEM) of 3.9 ± 0.3 μM and 2.1 ± 0.2 μM at the intracellular amastigote stage and 29.8 ± 2.5 μM and 17.7 ± 1.0 μM at the promastigote stage. Susceptibilities at the two parasite stages did not correlate for either drug. Isolates from high SAG resistance zones exhibited significantly lower susceptibility to sitamaquine than those from low SAG resistance zones, while isolates from different zones showed similar susceptibilities to paromomycin. NO release was promoted in L. donovani-infected macrophages upon treatment with paromomycin/sitamaquine. NO inhibitors significantly compromised amastigote killing by sitamaquine, but not by paromomycin. In conclusion, SAG-resistant/sensitive VL isolates were susceptible to both paromomycin and sitamaquine. Paromomycin, exhibiting higher efficacy against SAG-resistant parasites and having a distinct mechanism of action, appears to be a promising drug for combination therapy.
منابع مشابه
Assessing aquaglyceroporin gene status and expression profile in antimony-susceptible and -resistant clinical isolates of Leishmania donovani from India.
OBJECTIVES Clinical resistance to pentavalent antimonials results from an interplay between uptake, efflux and sequestration in Leishmania. Aquaglyceroporins (AQPs) have been shown to facilitate uptake of trivalent metalloids. Down-regulation of AQP1 in Leishmania results in resistance to trivalent antimony, whereas overexpression of AQP1 in drug-resistant parasites can reverse the resistance. ...
متن کاملElucidation of cellular mechanisms involved in experimental paromomycin resistance in Leishmania donovani.
Leishmania donovani is the causative agent of the potentially fatal disease visceral leishmaniasis (VL). Chemotherapeutic options available to treat VL are limited and often face parasite resistance, inconsistent efficacy, and toxic side effects. Paromomycin (PMM) was recently introduced to treat VL as a monotherapy and in combination therapy. It is vital to understand the mechanisms of PMM res...
متن کاملRole of aquaglyceroporin (AQP1) gene and drug uptake in antimony-resistant clinical isolates of Leishmania donovani.
Antimonial-containing drugs are the first line of treatment against Leishmaniasis. Resistance to antimonials in Leishmania is proposed to be due to reduced uptake of trivalent antimony (SbIII) through the aquaglyceroporin (AQP1). We investigated the uptake of SbIII and involvement of aquaglyceroporin in developing antimony resistance phenotype in Leishmania donovani clinical isolates. SbIII acc...
متن کاملComparative Fitness of a Parent Leishmania donovani Clinical Isolate and Its Experimentally Derived Paromomycin-Resistant Strain
Paromomycin has recently been introduced for the treatment of visceral leishmaniasis and emergence of drug resistance can only be appropriately judged upon its long term routine use in the field. Understanding alterations in parasite behavior linked to paromomycin-resistance may be essential to assess the propensity for emergence and spread of resistant strains. A standardized and integrated la...
متن کاملOver-Expression of 60s Ribosomal L23a Is Associated with Cellular Proliferation in SAG Resistant Clinical Isolates of Leishmania donovani
BACKGROUND Sodium antimony gluconate (SAG) unresponsiveness of Leishmania donovani (Ld) had effectively compromised the chemotherapeutic potential of SAG. 60s ribosomal L23a (60sRL23a), identified as one of the over-expressed protein in different resistant strains of L.donovani as observed with differential proteomics studies indicates towards its possible involvement in SAG resistance in L.don...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Antimicrobial agents and chemotherapy
دوره 55 6 شماره
صفحات -
تاریخ انتشار 2011