Cutting Planes and a Biased Newton Direction for Minimizing Quasiconvex Functions
نویسندگان
چکیده
A biased Newton direction is introduced for minimizing quasiconvex functions with bounded level sets. It is a generalization of the usual Newton's direction for strictly convex quadratic functions. This new direction can be derived from the intersection of approximating hyperplanes to the epigraph at points on the boundary of the same level set. Based on that direction, an unconstrained minimization algorithm is presented. It is proved to have global and local-quadratic convergence under standard hypotheses. These theoretical results may lead to di erent methods based on computing search directions using only rst order information at points on the level sets. Most of all if the computational cost can be reduced by relaxing some of the conditions according for instance to the results presented in the Appendix. Some tests are presented to show the qualitative behavior of the new direction and with the purpose to stimulate further research on these kind of algorithms.
منابع مشابه
Hermite-Hadamard inequality for geometrically quasiconvex functions on co-ordinates
In this paper we introduce the concept of geometrically quasiconvex functions on the co-ordinates and establish some Hermite-Hadamard type integral inequalities for functions defined on rectangles in the plane. Some inequalities for product of two geometrically quasiconvex functions on the co-ordinates are considered.
متن کاملAn efficient improvement of the Newton method for solving nonconvex optimization problems
Newton method is one of the most famous numerical methods among the line search methods to minimize functions. It is well known that the search direction and step length play important roles in this class of methods to solve optimization problems. In this investigation, a new modification of the Newton method to solve unconstrained optimization problems is presented. The significant ...
متن کاملOrbits of Geometric Descent
We prove that quasiconvex functions always admit descent trajectories bypassing all non-minimizing critical points.
متن کاملQuasiconvex Programming
We define quasiconvex programming, a form of generalized linear programming in which one seeks the point minimizing the pointwise maximum of a collection of quasiconvex functions. We survey algorithms for solving quasiconvex programs either numerically or via generalizations of the dual simplex method from linear programming, and describe varied applications of this geometric optimization techn...
متن کاملMultiple Cuts in the Analytic Center Cutting Plane Method
We analyze the multiple cut generation scheme in the analytic center cutting plane method. We propose an optimal primal and dual updating direction when the cuts are central. The direction is optimal in the sense that it maximizes the product of the new dual slacks and of the new primal variables within the trust regions defined by Dikin’s primal and dual ellipsoids. The new primal and dual dir...
متن کامل