Rapid Humanoid Motion Learning through Coordinated, Parallel Evolution
نویسندگان
چکیده
Planning movements for humanoid robots is still a major challenge due to the very high degrees-of-freedom involved. Most humanoid control frameworks incorporate dynamical constraints related to a task that require detailed knowledge of the robot’s dynamics, making them impractical as efficient planning. In previous work, we introduced a novel planning method that uses an inverse kinematics solver called Natural Gradient Inverse Kinematics (NGIK) to build task-relevant roadmaps (graphs in task space representing robot configurations that satisfy task constraints) by searching the configuration space via the Natural Evolution Strategies (NES) algorithm. The approach places minimal requirements on the constraints, allowing for complex planning in the task space. However, building a roadmap via NGIK is too slow for dynamic environments. In this paper, the approach is scaled-up to a fully-parallelized implementation where additional constraints coordinate the interaction between independent NES searches running on separate threads. Parallelization yields a 12× speedup that moves this promising planning method a major step closer to working in dynamic environments.
منابع مشابه
A Parallel Distributed Cognitive Control System for a Humanoid Robot
During the last decade, researchers at Vanderbilt have been developing a humanoid robot called the Intelligent Soft Arm Control (ISAC). This paper describes ISAC in terms of its software components and with respect to the design philosophy that has evolved over the course of its development. Central to the control system is a parallel, distributed software architecture, comprising a set of inde...
متن کاملAdaptive synthesis of dynamically feasible full-body movements for the humanoid robot HRP-2 by flexible combination of learned dynamic movement primitives
Skilled human full-body movements are often planned in a highly predictive manner. For example, during walking while reaching towards a goal object results in steps and body postures are adapted to the goal position already multiple steps before the goal contact. The realization of such highly predictive behaviors for humanoid robots is a challenge because standard approaches, such as optimal c...
متن کاملIncremental episodic segmentation and imitative learning of humanoid robot through self-exploration
Imitation learning through self-exploration is an essential mechanism in developing sensorimotor skills for human infants as well for robots. We assume that a primitive sense of self is the prerequisite for successful social interaction rather than an outcome of it. During imitation learning, a crucial element of conception involves segmenting the continuous flow of motion into simpler units – ...
متن کاملFlexible Foot/Ankle Based on PKM with Force/Torque Sensor for Humanoid Robot
This paper describes the development of a novel humanoid robot foot/ankle based on an orientation Parallel Kinematic Mechanism for intelligent and flexible control. With three identical Universal-Prismatic-Spherical prismatic-actuated limbs and a central Universal-Revolute passive limb, the PKM can perform three degrees of freedom rotation motions. In order to enable the humanoid robot safely t...
متن کاملImitation Learning of Robot Movement Using Evolutionary Algorithm
This paper presents a new framework to generate human-like movement of a humanoid robot in real time using the movement primitive database of a human. The framework consists of two processes: (1) the offline motion imitation learning based on Evolutionary Algorithm and (2) the movement generation of a humanoid robot using the database updated by the motion imitation learning. For the offline pr...
متن کامل