Colored graphs without colorful cycles
نویسندگان
چکیده
A colored graph is a complete graph in which a color has been assigned to each edge, and a colorful cycle is a cycle in which each edge has a different color. We first show that a colored graph lacks colorful cycles iff it is Gallai, i.e., lacks colorful triangles. We then show that, under the operation m◦n ≡ m+n−2, the omitted lengths of colorful cycles in a colored graph form a monoid isomorphic to a submonoid of the natural numbers which contains all integers past some point. We prove that several but not all such monoids are realized. We then characterize exact Gallai graphs, i.e., graphs in which every triangle has edges of exactly two colors. We show that these are precisely the graphs which can be iteratively built up from three simple colored graphs, having 2, 4, and 5 vertices, respectively. We then characterize in two different ways the monochromes, i.e., the connected components of maximal monochromatic subgraphs, of exact Gallai graphs. The first characterization is in terms of their reduced form, a notion which hinges on the important idea of a full homomorphism. The second characterization is by means of a homomorphism duality.
منابع مشابه
Colorful induced subgraphs
Kierstead, H.A. and W.T. Trotter. Colorful induced subgraphs, Discrete Mathematics 101 (1992) 165-169. A colored graph is a graph whose vertices have been properly, though not necessarily optimally colored, with integers. Colored graphs have a natural orientation in which edges are directed from the end point with smaller color to the end point with larger color. A subgraph of a colored graph i...
متن کاملNote on edge-colored graphs and digraphs without properly colored cycles
We study the following two functions: d(n, c) and ~ d(n, c); d(n, c) (~ d(n, c)) is the minimum number k such that every c-edge-colored undirected (directed) graph of order n and minimum monochromatic degree (out-degree) at least k has a properly colored cycle. Abouelaoualim et al. (2007) stated a conjecture which implies that d(n, c) = 1. Using a recursive construction of c-edge-colored graphs...
متن کاملMaximum colored trees in edge-colored graphs
Abstract We consider maximum properly edge-colored trees in edge-colored graphs Gc. We also consider the problem where, given a vertex r, determine whether the graph has a spanning tree rooted at r, such that all root-to-leaf paths are properly colored. We consider these problems from graphtheoretic as well as algorithmic viewpoints. We prove their optimization versions to be NP-hard in general...
متن کاملCycles and paths in edge-colored graphs with given degrees
Sufficient degree conditions for the existence of properly edge-colored cycles and paths in edge-colored graphs, multigraphs and random graphs are inverstigated. In particular, we prove that an edgecolored multigraph of order n on at least three colors and with minimum colored degree greater than or equal to d 2 e has properly edge-colored cycles of all possible lengths, including hamiltonian c...
متن کاملGraphs and colors : edge-colored graphs, edge-colorings and proper connections. (Graphes et couleurs : graphes arêtes-coloriés, coloration d'arêtes et connexité propre)
In this thesis, we study different problems in edge-colored graphs and edge-colored multigraphs, such as proper connection, strong edge colorings, and proper hamiltonian paths and cycles. Finally, we improve the known O(n) algorithm to decide the behavior of a graph under the biclique operator, by studying bicliques in graphs without false-twin vertices. In particular, • We first study the k-pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorica
دوره 27 شماره
صفحات -
تاریخ انتشار 2007