Elimination of antiestrogenic effects of active tamoxifen metabolites by glucuronidation.
نویسندگان
چکیده
1-[4-(2-Dimethylaminoethoxy)-phenyl]-1,2-diphenylbut-1-(Z)-ene (tamoxifen, TAM) is a nonsteroidal antiestrogen that has been commonly used for the prevention and treatment of estrogen receptor-positive breast cancer. TAM is extensively metabolized into several primary active metabolites including 4-hydroxy-TAM (4-OH-TAM) and endoxifen. Glucuronidation is the major phase II metabolic pathway important in their excretion. Whereas high antiestrogenic activity has been reported for both 4-OH-TAM and endoxifen, studies examining the effect of glucuronide conjugation of these metabolites have not previously been performed. In the present study, the antiestrogenic activities of glucuronidated TAM metabolites were determined by examining their effect on the induction of the estrogen-responsive progesterone receptor (PGR) gene. 17beta-Estradiol (E(2))-mediated PGR gene expression in MCF-7 cells was determined by real-time reverse transcriptase-polymerase chain reaction for each TAM metabolite isomer. E(2) (1 x 10(-10) M) induction of PGR mRNA was 6-fold after a 12-h incubation; only unconjugated TAM metabolites inhibited this effect. A virtually identical dose-dependent inhibition of E(2)-induced PGR gene expression was found for both the trans- and cis-isomers of 4-OH-TAM and endoxifen, with maximal inhibition attained at 1 x 10(-6) M of TAM metabolite. The glucuronide conjugates of all 4-OH-TAM and endoxifen isomers exhibited no effect on E(2)-mediated induction of PGR expression at all concentrations of TAM metabolite examined in this study. These data indicate that isomers of both 4-OH-TAM and endoxifen exhibit roughly equipotent antiestrogenic effects on E(2)-induced gene expression and that glucuronide conjugates of the same metabolites effectively negate this activity. This result may have important implications in terms of both whole-body and target tissue-specific glucuronidation pathways and individual responses to TAM therapy and cancer prevention.
منابع مشابه
Glucuronidation of active tamoxifen metabolites by the human UDP glucuronosyltransferases.
Tamoxifen (TAM) is an antiestrogen that has been widely used in the treatment and prevention of breast cancer in women. One of the major mechanisms of metabolism and elimination of TAM and its major active metabolites 4-hydroxytamoxifen (4-OH-TAM) and 4-OH-N-desmethyl-TAM (endoxifen; 4-hydroxy-N-desmethyl-tamoxifen) is via glucuronidation. Although limited studies have been performed characteri...
متن کاملFunctional significance of UDP-glucuronosyltransferase variants in the metabolism of active tamoxifen metabolites.
Tamoxifen (TAM) is a selective estrogen receptor modulator widely used in the prevention and treatment of breast cancer. A major mode of metabolism of the major active metabolites of TAM, 4-OH-TAM and endoxifen, is by glucuronidation via the UDP-glucuronosyltransferase (UGT) family of enzymes. To examine whether polymorphisms in the UGT enzymes responsible for the glucuronidation of active TAM ...
متن کاملEffects of Pharmacogenetics on the Pharmacokinetics and Pharmacodynamics of Tamoxifen
The antiestrogenic drug tamoxifen is widely used in the treatment of estrogen receptor-α-positive breast cancer and substantially decreases recurrence and mortality rates. However, high interindividual variability in response is observed, calling for a personalized approach to tamoxifen treatment. Tamoxifen is bioactivated by cytochrome P450 (CYP) enzymes such as CYP2B6, CYP2C9, CYP2C19, CYP2D6...
متن کاملPharmacological relevance of endoxifen in a laboratory simulation of breast cancer in postmenopausal patients.
BACKGROUND Tamoxifen is metabolically activated via a CYP2D6 enzyme system to the more potent hydroxylated derivatives 4-hydroxytamoxifen and endoxifen. This study addresses the pharmacological importance of endoxifen by simulating clinical scenarios in vitro. METHODS Clinical levels of tamoxifen metabolites in postmenopausal breast cancer patients previously genotyped for CYP2D6 were used in...
متن کاملInterspecies variation in the hepatic biotransformation of zearalenone: Evidence for bio-inactivation of mycoestrogen zearalenone in sturgeon fish
Zearalenone (ZEA) as mycoestrogen is found in human foods and animal feeds. Its estrogenic potency depends on its biotransformation fate. The hepatic biotransformation of ZEA in two species of sturgeon fish (Acipenser persicus and Huso huso) was investigated. ZEA was incubated with the hepatic microsomal and post-mitochondrial sub-fractions in the presence of NADPH and the metabolites were dete...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Drug metabolism and disposition: the biological fate of chemicals
دوره 35 10 شماره
صفحات -
تاریخ انتشار 2007