An Ehp Proof of the Lambda Algebra Admissible Monomial Basis

نویسنده

  • WILLIAM RICHTER
چکیده

The proof follows from relations between Adem relations (4), using what Bousfield calls “pension operators”, i.e. selfmaps of tensor powers which preserve Adem relations. I believe Bousfield had a proof of this sort. Following Mahowald’s suggestion, we’ll give an EHP proof of the basis. Let V be the Z/2 vectorspace with basis {λp : p ≥ −1}. Define e : V → V by e(λp) = λp+1, and define the selfmap D = e⊗1+1⊗e of V ⊗2. We’ll use the original [B-C-K&] symmetric Adem relations, for p ≥ −1, n ≥ 0:

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the X basis in the Steenrod algebra

‎Let $mathcal{A}_p$ be the mod $p$ Steenrod algebra‎, ‎where $p$ is an odd prime‎, ‎and let $mathcal{A}$ be the‎ subalgebra $mathcal{A}$ of $mathcal{A}_p$ generated by the Steenrod $p$th powers‎. ‎We generalize the $X$-basis in $mathcal{A}$ to $mathcal{A}_p$‎.

متن کامل

Monomial Irreducible sln-Modules

In this article, we introduce monomial irreducible representations of the special linear Lie algebra $sln$. We will show that this kind of representations have bases for which the action of the Chevalley generators of the Lie algebra on the basis elements can be given by a simple formula.

متن کامل

Combinatorial Proofs of the Lambda Algebra Basis and Ehp Sequence

Combinatorial proofs are given of the Λ basis and EHP sequence.

متن کامل

Proof of Dickson’s Lemma Using the ACL2 Theorem Prover via an Explicit Ordinal Mapping

In this paper we present the use of the ACL2 theorem prover to formalize and mechanically check a new proof of Dickson’s lemma about monomial sequences. Dickson’s lemma can be used to establish the termination of Büchberger’s algorithm to find the Gröbner basis of a polynomial ideal. This effort is related to a larger project which aims to develop a mechanically verified computer algebra system.

متن کامل

Linking first occurrence polynomials over Fp by Steenrod operations

This paper provides analogues of the results of [16] for odd primes p . It is proved that for certain irreducible representations L(λ) of the full matrix semigroup Mn(Fp), the first occurrence of L(λ) as a composition factor in the polynomial algebra P = Fp[x1, . . . , xn] is linked by a Steenrod operation to the first occurrence of L(λ) as a submodule in P. This operation is given explicitly a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004