An Elementary Proof of Lebesgue's Differentiation Theorem
نویسنده
چکیده
The fact that a continuous monotone function is differentiable almost everywhere was established by Lebesgue in 1904. Riesz gave a completely elementary proof of this theorem in 1932 by using his ’Rising Sun Lemma’. Other than Riesz’s, all the proofs of this theorem utilize measure theory. Also a geometric proof which involves measure theory and sets of measure zero was given by D. Austin. The purpose of this work is to give an easier alternative proof of this theorem that can be presented in an elementary analysis course. This proof uses the sets of measure zero and upper and lower derivatives. We will use Heine-Borel Theorem and an elementary covering lemma to show that a nondecreasing function f defined on [a, b] has derivative almost everywhere in this interval. Özet Sürekli ve monoton bir fonksiyonun hemen her yerde türevlenebilir olması durumu 1904’te Lebesgue tarafından tasdik edilmiştir. Reisz 1932’de ’Rising Sun’ önsavını kullanarak bu teoremin basit bir ispatını yapmıştır. Reisz’ınki hariç ispatlarn hepsinde ölçü teorisi kullanılmıştır. Ayrıca D. Austin tarafından da ölçü teorisini ve ölçümü sıfır olan kümeleri içeren geometrik bir ispat verilmiştir. Bu çalışmanın amacı teoremin elementer analiz derslerinde sunulabilecek şekilde daha kolay alternatif bir ispatını vermektir. Bu ispatta ölçümü sıfır olan kümeleri ve alt ve üst türevler kullanılmaktadır. [a, b] de tanımlı azalmayan bir fonksiyon olan f nin bu aralıkta hemen her yerde türevlenebilir olduğunu göstermek için Heine-Borel Teoremin’i ve aynı zamanda basit bir örtü kümesi önsavını kullanacağız.
منابع مشابه
On Differentiation of Integrals and Approximate Continuity
The following discussion is closely connected with Lebesgue's theorem that the derivative of an integral is equal to the integrand almost everywhere. I t is well known that in generalizing this theorem to higher dimensions, great care must be exercised in the choice of the systems of intervals or sets used for ^-dimensional differentiation. Lebesgue had already observed that arbitrary intervals...
متن کاملThe Fundamental Theorem of Algebra: an Elementary and Direct Proof
We present a simple, differentiation-free, integrationfree, trigonometryfree, direct and elementary proof of the Fundamental Theorem of Algebra. “The final publication (in The Mathematical Intelligencer, 33, No. 2 (2011), 1-2) is available at www.springerlink.com: http://www.springerlink.com/content/l1847265q2311325/”
متن کاملThe Basic Theorem and its Consequences
Let T be a compact Hausdorff topological space and let M denote an n–dimensional subspace of the space C(T ), the space of real–valued continuous functions on T and let the space be equipped with the uniform norm. Zukhovitskii [7] attributes the Basic Theorem to E.Ya.Remez and gives a proof by duality. He also gives a proof due to Shnirel’man, which uses Helly’s Theorem, now the paper obtains a...
متن کاملOn the norm of the derived subgroups of all subgroups of a finite group
In this paper, we give a complete proof of Theorem 4.1(ii) and a new elementary proof of Theorem 4.1(i) in [Li and Shen, On the intersection of the normalizers of the derived subgroups of all subgroups of a finite group, J. Algebra, 323 (2010) 1349--1357]. In addition, we also give a generalization of Baer's Theorem.
متن کاملLebesgue's dominated convergence theorem in Bishop's style
We present a constructive proof in Bishop’s style of Lebesgue’s dominated convergence theorem in the abstract setting of ordered uniform spaces. The proof generalises to this setting a classical proof in the framework of uniform lattices presented by Hans Weber in “Uniform Lattices II: Order Continuity and Exhaustivity”, in Annali di Matematica Pura ed Applicata (IV), Vol. CLXV (1993). 1. Both ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The American Mathematical Monthly
دوره 110 شماره
صفحات -
تاریخ انتشار 2003