Specific binding to intracellular proteins determines arterial transport properties for rapamycin and paclitaxel.

نویسندگان

  • Andrew D Levin
  • Neda Vukmirovic
  • Chao-Wei Hwang
  • Elazer R Edelman
چکیده

Endovascular drug-eluting stents have changed the practice of medicine, and yet it is unclear how they so dramatically reduce restenosis and how to distinguish between the different formulations available. Biological drug potency is not the sole determinant of biological effect. Physicochemical drug properties also play important roles. Historically, two classes of therapeutic compounds emerged: hydrophobic drugs, which are retained within tissue and have dramatic effects, and hydrophilic drugs, which are rapidly cleared and ineffective. Researchers are now questioning whether individual properties of different drugs beyond lipid avidity can further distinguish arterial transport and distribution. In bovine internal carotid segments, tissue-loading profiles for hydrophobic paclitaxel and rapamycin are indistinguishable, reaching load steady state after 2 days. Hydrophilic dextran reaches equilibrium in several hours at levels no higher than surrounding solution concentrations. Both paclitaxel and rapamycin bind to the artery at 30-40 times bulk concentration. Competitive binding assays confirm binding to specific tissue elements. Most importantly, transmural drug distribution profiles are markedly different for the two compounds, reflecting, perhaps, different modes of binding. Rapamycin, which binds specifically to FKBP12 binding protein, distributes evenly through the artery, whereas paclitaxel, which binds specifically to microtubules, remains primarily in the subintimal space. The data demonstrate that binding of rapamycin and paclitaxel to specific intracellular proteins plays an essential role in determining arterial transport and distribution and in distinguishing one compound from another. These results offer further insight into the mechanism of local drug delivery and the specific use of existing drug-eluting stent formulations.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Diffusion-Limited Binding Explains Binary Dose Response for Local Arterial and Tumor Drug Delivery

Background—Local drug delivery has transformed medicine, yet it remains unclear how drug efficacy depends on physicochemical properties and delivery kinetics. Most therapies seek to prolong release, yet, recent studies demonstrate sustained clinical benefit following local bolus endovascular delivery. Objectives—The purpose of the current study was to examine the interplay between drug dose, di...

متن کامل

Diffusion-limited binding explains binary dose response for local arterial and tumour drug delivery.

BACKGROUND Local drug delivery has transformed medicine, yet it remains unclear how drug efficacy depends on physicochemical properties and delivery kinetics. Most therapies seek to prolong release, yet recent studies demonstrate sustained clinical benefit following local bolus endovascular delivery. OBJECTIVES The purpose of the current study was to examine interplay between drug dose, diffu...

متن کامل

Computational model of intracellular pharmacokinetics of paclitaxel.

The intracellular pharmacokinetics of paclitaxel is closely related to its pharmacodynamics. Although drug transport across the cell membrane and extracellular and intracellular drug binding have been shown to affect intracellular drug accumulation, their quantitative relationship is unknown. This study was designed to establish a mathematical model for computing the intracellular paclitaxel ph...

متن کامل

Arterial paclitaxel distribution and deposition.

Successful implementation of local arterial drug delivery requires transmural distribution of drug. The physicochemical properties of the applied compound, which govern its transport and tissue binding, become as important as the mode of delivery. Hydrophilic compounds distribute freely but are cleared rapidly. Hydrophobic drugs, insoluble in aqueous solutions, bind to fixed tissue elements, po...

متن کامل

Interdependent effect of P-glycoprotein-mediated drug efflux and intracellular drug binding on intracellular paclitaxel pharmacokinetics: application of computational modeling.

Intracellular concentration of paclitaxel is determined by the extracellular drug concentration, the level of the mdr1 P-glycoprotein (Pgp), and binding to intracellular proteins including tubulins/microtubules. The present study used a computational method to examine the effects of these factors, singly and in combination, on intracellular paclitaxel pharmacokinetics. The study was performed u...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 101 25  شماره 

صفحات  -

تاریخ انتشار 2004