Circadian Regulation of Food-Anticipatory Activity in Molecular Clock–Deficient Mice
نویسندگان
چکیده
In the mammalian brain, the suprachiasmatic nucleus (SCN) of the anterior hypothalamus is considered to be the principal circadian pacemaker, keeping the rhythm of most physiological and behavioral processes on the basis of light/dark cycles. Because restriction of food availability to a certain time of day elicits anticipatory behavior even after ablation of the SCN, such behavior has been assumed to be under the control of another circadian oscillator. According to recent studies, however, mutant mice lacking circadian clock function exhibit normal food-anticipatory activity (FAA), a daily increase in locomotor activity preceding periodic feeding, suggesting that FAA is independent of the known circadian oscillator. To investigate the molecular basis of FAA, we examined oscillatory properties in mice lacking molecular clock components. Mice with SCN lesions or with mutant circadian periods were exposed to restricted feeding schedules at periods within and outside circadian range. Periodic feeding led to the entrainment of FAA rhythms only within a limited circadian range. Cry1(-/-) mice, which are known to be a "short-period mutant," entrained to a shorter period of feeding cycles than did Cry2(-/-) mice. This result indicated that the intrinsic periods of FAA rhythms are also affected by Cry deficiency. Bmal1(-/-) mice, deficient in another essential element of the molecular clock machinery, exhibited a pre-feeding increase of activity far from circadian range, indicating a deficit in circadian oscillation. We propose that mice possess a food-entrainable pacemaker outside the SCN in which canonical clock genes such as Cry1, Cry2 and Bmal1 play essential roles in regulating FAA in a circadian oscillatory manner.
منابع مشابه
"Feeding time" for the brain: a matter of clocks.
Circadian clocks are autonomous time-keeping mechanisms that allow living organisms to predict and adapt to environmental rhythms of light, temperature and food availability. At the molecular level, circadian clocks use clock and clock-controlled genes to generate rhythmicity and distribute temporal signals. In mammals, synchronization of the master circadian clock located in the suprachiasmati...
متن کاملFood-entrained circadian rhythms are sustained in arrhythmic Clk/Clk mutant mice.
Daily scheduled feeding is a potent time cue that elicits anticipatory activity in rodents. This food-anticipatory activity (FAA) is controlled by a food-entrainable oscillator (FEO) that is distinct from light-entrained oscillators of the suprachiasmatic nucleus (SCN). Circadian rhythms within the SCN depend on transcription-translation feedback loops in which CLOCK protein is a key positive r...
متن کاملAttenuated Food Anticipatory Activity and Abnormal Circadian Locomotor Rhythms in Rgs16 Knockdown Mice
Regulators of G protein signaling (RGS) are a multi-functional protein family, which functions in part as GTPase-activating proteins (GAPs) of G protein α-subunits to terminate G protein signaling. Previous studies have demonstrated that the Rgs16 transcripts exhibit robust circadian rhythms both in the suprachiasmatic nucleus (SCN), the master circadian light-entrainable oscillator (LEO) of th...
متن کاملDaily rhythms of food-anticipatory behavioral activity do not require the known circadian clock.
When food availability is restricted to a particular time each day, mammals exhibit food-anticipatory activity (FAA), a daily increase in locomotor activity preceding the presentation of food. Considerable historical evidence suggests that FAA is driven by a food-entrainable circadian clock distinct from the master clock of the suprachiasmatic nucleus. Multiple food-entrainable circadian clocks...
متن کاملDopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice
Daily rhythms of food anticipatory activity (FAA) are regulated independently of the suprachiasmatic nucleus, which mediates entrainment of rhythms to light, but the neural circuits that establish FAA remain elusive. In this study, we show that mice lacking the dopamine D1 receptor (D1R KO mice) manifest greatly reduced FAA, whereas mice lacking the dopamine D2 receptor have normal FAA. To dete...
متن کامل