Reduced NO-dependent arteriolar dilation during the development of cardiomyopathy.
نویسندگان
چکیده
Our previous studies have suggested that there is reduced nitric oxide (NO) production in canine coronary blood vessels after the development of pacing-induced heart failure. The goal of these studies was to determine whether flow-induced NO-mediated dilation is altered in coronary arterioles during the development of heart failure. Subepicardial coronary arterioles (basal diameter 80 microm) were isolated from normal canine hearts, from hearts with dysfunction but no heart failure, and from hearts with severe cardiac decompensation. Arterioles were perfused at increasing flow or administered agonists with no flow in vitro. In arterioles from normal hearts, flow increased arteriolar diameter, with one-half of the response being NO dependent and one-half prostaglandin dependent. Shear stress-induced dilation was eliminated by removing the endothelium. Arterioles from normal hearts and hearts with dysfunction but no failure responded to increasing shear stress with dilation that reached a maximum at a shear stress of 20 dyn/cm(2). In contrast, arterioles from failing hearts showed a reduced dilation, reaching only 55% of the dilation seen in vessels of normal hearts at a shear stress of 100 dyn/cm(2). This remaining dilation was eliminated by indomethacin, suggesting that the NO-dependent component was absent in coronary microvessels after the development of heart failure. Similarly, agonist-induced NO-dependent coronary arteriolar dilation was markedly attenuated after the development of heart failure. After the development of severe dilated cardiomyopathy and heart failure, the NO-dependent component of both shear stress- and agonist-induced arteriolar dilation is reduced or entirely absent.
منابع مشابه
Impaired NO-dependent dilation of skeletal muscle arterioles in hypertensive diabetic obese Zucker rats.
This study determined alterations to nitric oxide (NO)-dependent dilation of skeletal muscle arterioles from obese (OZR) versus lean Zucker rats (LZR). In situ cremaster muscle arterioles from both groups were viewed via television microscopy, and vessel dilation was measured with a video micrometer. Arteriolar dilation to acetylcholine and sodium nitroprusside was reduced in OZR versus LZR, al...
متن کاملGrowth-dependent changes in endothelial factors regulating arteriolar tone.
Previous studies from this laboratory suggest that during maturation, rapid microvascular growth is accompanied by changes in the mechanisms responsible for regulation of tissue blood flow. To further define these changes, we studied isolated gracilis muscle arterioles from weanling ( approximately 25 days) and juvenile ( approximately 44 days) Sprague-Dawley rats to test the hypothesis that en...
متن کاملOxygen radicals mediate the cerebral arteriolar dilation from arachidonate and bradykinin in cats.
Topical application of sodium arachidonate (50-200 micrograms/ml) or bradykinin (0.1-10 micrograms/ml) on the brain surface of anesthetized cats caused dose-dependent cerebral arteriolar dilation. This dilation was blocked by 67-100% in the presence of superoxide dismutase and catalase. These enzymes did not affect the changes in arteriolar diameter caused by alterations in arterial blood PCO2,...
متن کاملAcute hyperglycemia depresses arteriolar NO formation in skeletal muscle.
In the rat intestinal and cerebral microvasculatures, acute d-glucose hyperglycemia suppresses endothelium-dependent dilation to ACh without affecting endothelium-independent dilation to nitroprusside. This study determined whether acute hyperglycemia suppressed arteriolar wall nitric oxide concentration ([NO]) at rest or during ACh stimulation and inhibited nitroprusside-, ACh- or contraction-...
متن کاملReduced perivascular PO2 increases nitric oxide release from endothelial cells.
Many studies have suggested that endothelial cells can act as "oxygen sensors" to large reductions in oxygen availability by increasing nitric oxide (NO) production. This study determined whether small reductions in oxygen availability enhanced NO production from in vivo intestinal arterioles, venules, and parenchymal cells. In vivo measurements of perivascular NO concentration ([NO]) were made...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 278 2 شماره
صفحات -
تاریخ انتشار 2000