Graded Duality for Filtered D-modules

نویسنده

  • MORIHIKO SAITO
چکیده

For a coherent filtered D-module we show that the dual of each graded piece over the structure sheaf is isomorphic to a certain graded piece of the ring-theoretic local cohomology complex of the graded quotient of the dual of the filtered D-module along the zero-section of the cotangent bundle. This follows from a similar assertion for coherent graded modules over a polynomial algebra over the structure sheaf. We also prove that the local cohomology sheaves can be calculated by using the higher direct images of the twists of the associated sheaf complex on the projective cotangent bundle. These are closely related to local duality, essentially due to Grothendieck.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local Duality and Mixed Hodge Modules

We establish a relationship between the graded quotients of a filtered holonomic D-module, their sheaf-theoretic duals, and the characteristic variety, in case the filtered D-module underlies a polarized Hodge module on a smooth algebraic variety. The proof is based on Saito’s result that the associated graded module is Cohen-Macaulay, and on local duality on the cotangent bundle.

متن کامل

Local Duality and Polarized Hodge Modules

We find a relationship between the graded quotients of a filtered holonomic D-module, their duals as coherent sheaves, and the characteristic variety, in case the filtered D-module underlies a polarized Hodge module on a smooth algebraic variety. The proof is based on M. Saito’s result that the associated graded module is Cohen–Macaulay, and on local duality for the cotangent bundle. The result...

متن کامل

Cohen-macaulay Modules and Holonomic Modules over Filtered Rings

We study Gorenstein dimension and grade of a module M over a filtered ring whose assosiated graded ring is a commutative Noetherian ring. An equality or an inequality between these invariants of a filtered module and its associated graded module is the most valuable property for an investigation of filtered rings. We prove an inequality G-dimM ≤ G-dimgrM and an equality gradeM = grade grM , whe...

متن کامل

On duality of modular G-Riesz bases and G-Riesz bases in Hilbert C*-modules

In this paper, we investigate duality of modular g-Riesz bases and g-Riesz bases in Hilbert C*-modules. First we give some characterization of g-Riesz bases in Hilbert C*-modules, by using properties of operator theory. Next, we characterize the duals of a given g-Riesz basis in Hilbert C*-module. In addition, we obtain sufficient and necessary condition for a dual of a g-Riesz basis to be agai...

متن کامل

On the Dimension Filtration and Cohen-macaulay Filtered Modules

For a finitely generated A-module M we define the dimension filtration M = {Mi}0≤i≤d, d = dimA M, where Mi denotes the largest submodule of M of dimension ≤ i. Several properties of this filtration are investigated. In particular, in case the local ring (A,m) possesses a dualizing complex, then this filtration occurs as the filtration of a spectral sequence related to duality. Furthermore, we c...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014