Activation of central opioid receptors determines the timing of hypotension during acute hemorrhage-induced hypovolemia in conscious sheep.

نویسندگان

  • R Frithiof
  • M Rundgren
چکیده

After an initial compensatory phase, hemorrhage reduces blood pressure due to a widespread reduction of sympathetic nerve activity (decompensatory phase). Here, we investigate the influence of intracerebroventricular naloxone (opioid-receptor antagonist) and morphine (opioid-receptor agonist) on the two phases of hemorrhage, central and peripheral hemodynamics, and release of vasopressin and renin in chronically instrumented conscious sheep. Adult ewes were bled (0.7 ml x kg(-1) x min(-1)) from a jugular vein until mean arterial blood pressure (MAP) reached 50 mmHg. Starting 30 min before and continuing until 60 min after hemorrhage, either artificial cerebrospinal fluid (aCSF), naloxone, or morphine was infused intracerebroventricularly. Naloxone (200 microg/min but not 20 or 2.0 microg/min) significantly increased the hemorrhage volume compared with aCSF (19.5 +/- 3.2 vs. 13.9 +/- 1.1 ml/kg). Naloxone also increased heart rate and cardiac index. Morphine (2.0 microg/min) increased femoral blood flow and decreased hemorrhage volume needed to reduce MAP to 50 mmHg (8.9 +/- 1.5 vs. 13.9 +/- 1.1 ml/kg). The effects of morphine were abolished by naloxone at 20 microg/min. It is concluded that the commencement of the decompensatory phase of hemorrhage in conscious sheep involves endogenous activation of central opioid receptors. The effective dose of morphine most likely activated mu-opioid receptors, but they appear not to have been responsible for initiating decompensation as 1) naloxone only inhibited an endogenous mechanism at a dose much higher than the effective dose of morphine, and 2) the effects of morphine were blocked by a dose of naloxone, which, by itself, did not delay the decompensatory phase.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Decreases in arterial pressure activate oxytocin neurons in conscious rats.

Hemorrhage and nonhypotensive hypovolemia are known to increase plasma levels of oxytocin (OT) and vasopressin (VP) in rats. The present experiments demonstrated that secretion of OT and VP also are stimulated by acute drug-induced hypotension. Injection of hydralazine abruptly decreased arterial blood pressure in conscious rats and induced Fos expression, a marker of neuronal activation, withi...

متن کامل

Activation of spinal opioid receptors contributes to hypotension after hemorrhage in conscious rats.

Opioid receptors are activated during severe hemorrhage, resulting in sympathoinhibition and a profound fall in blood pressure. This study examined the location and subtypes of opioid receptors that might contribute to hypotension after hemorrhage. Intrathecal naloxone methiodide (100 nmol) abolished the fall in blood pressure after hemorrhage (1.5% of body wt; mean arterial pressure 122 ± 8 mm...

متن کامل

AHEART May 45/5

Ang, Kooi K., Robert J. McRitchie, Jane B. Minson, Ida J. Llewellyn-Smith, Paul M. Pilowsky, John P. Chalmers, and Leonard F. Arnolda. Activation of spinal opioid receptors contributes to hypotension after hemorrhage in conscious rats. Am. J. Physiol. 276 (Heart Circ. Physiol. 45): H1552–H1558, 1999.—Opioid receptors are activated during severe hemorrhage, resulting in sympathoinhibition and a ...

متن کامل

Opioid Receptors of the Central Amygdala and Morphine-Induced Antinociception

The amygdala is a forebrain region, which is known as a modulator of pain sensation. The amygdala, particularly the central nucleus, has high concentrations of enkephalins relative to dynorphins and has high concentrations of opioid receptors. We here studied the role of central nuclei of amygdala in morphine antinociception. Methods: In this study, we used 130 male Wistar rats (200- 250g). Bil...

متن کامل

Role of central AT1 and V1 receptors in cardiovascular adaptation to hemorrhage in SD and renin TGR rats.

In acute experiments, intracranially applied angiotensin II and vasopressin elicit significant cardiovascular effects. The purpose of the present study was to find out whether chronic intrabrain elevation of these peptides, occurring in the renin transgenic TGR(mRen2)27 (TGR) rats, results in an alteration of the cardiovascular control. Mean arterial blood pressure (MAP) and heart rate response...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 291 4  شماره 

صفحات  -

تاریخ انتشار 2006