Saccharomyces cerevisiae Live Cells Decreased In vitro Methane Production in Intestinal Content of Pigs
نویسندگان
چکیده
An in vitro gas production technique was used in this study to elucidate the effect of two strains of active live yeast on methane (CH4) production in the large intestinal content of pigs to provide an insight to whether active live yeast could suppress CH4 production in the hindgut of pigs. Treatments used in this study include blank (no substrate and no live yeast cells), control (no live yeast cells) and yeast (YST) supplementation groups (supplemented with live yeast cells, YST1 or YST2). The yeast cultures contained 1.8×10(10) cells per g, which were added at the rates of 0.2 mg and 0.4 mg per ml of the fermented inoculum. Large intestinal contents were collected from 2 Duroc×Landrace×Yorkshire pigs, mixed with a phosphate buffer (1:2), and incubated anaerobically at 39°C for 24 h using 500 mg substrate (dry matter (DM) basis). Total gas and CH4 production decreased (p<0.05) with supplementation of yeast. The methane production reduction potential (MRP) was calculated by assuming net methane concentration for the control as 100%. The MRP of yeast 2 was more than 25%. Compared with the control group, in vitro DM digestibility (IVDMD) and total volatile fatty acids (VFA) concentration increased (p<0.05) in 0.4 mg/ml YST1 and 0.2 mg/ml YST2 supplementation groups. Proportion of propionate, butyrate and valerate increased (p<0.05), but that of acetate decreased (p<0.05), which led to a decreased (p<0.05) acetate: propionate (A: P) ratio in the both YST2 treatments and the 0.4 mg/ml YST 1 supplementation groups. Hydrogen recovery decreased (p<0.05) with yeast supplementation. Quantity of methanogenic archaea per milliliter of inoculum decreased (p<0.05) with yeast supplementation after 24 h of incubation. Our results suggest that live yeast cells suppressed in vitro CH4 production when inoculated into the large intestinal contents of pigs and shifted the fermentation pattern to favor propionate production together with an increased population of acetogenic bacteria, both of which serve as a competitive pathway for the available H2 resulting in the reduction of methanogenic archaea.
منابع مشابه
Effects of a twin strain of saccharomyces cerevisiae live cells on mixed ruminal microorganism fermentation in vitro.
This experiment was designed to investigate the effects of different concentrations (0, 0.33, 0.66, 0.99, and 1.32 g/L) of a twin-strain of Saccharomyces cerevisiae live cells on in vitro mixed ruminal microorganism fermentation of corn starch, soluble potato starch, and sudangrass hay (60.5%, DM basis) plus concentrate mixture (39.5%, DM basis). Ruminal fluid was collected from two dairy cows,...
متن کاملEvaluation of Different Yeast Species for Improving In vitro Fermentation of Cereal Straws.
Information on the effects of different yeast species on ruminal fermentation is limited. This experiment was conducted in a 3×4 factorial arrangement to explore and compare the effects of addition of three different live yeast species (Candida utilis 1314, Saccharomyces cerevisiae 1355, and Candida tropicalis 1254) at four doses (0, 0.25×10(7), 0.50×10(7), and 0.75×10(7) colony-forming unit [c...
متن کاملAuto-antibodies in Patients with Inflammatory Bowel Disease Unclassified
Background: Inflammatory bowel disease unclassified (IBDU) is considered to be an aberrant immune response with loss of tolerance to many antigens. Objective: This paper tries to address whether there is any value to test for auto-antibodies in such patients. Methods: 60 patients with inflammatory bowel disease unclassified participated in the study. Auto-antibodies to nuclear antigen, intestin...
متن کاملCisplatin cytotoxicity is dependent on mitochondrial respiration in Saccharomyces cerevisiae
Objective(s): To understand the role of mitochondrial respiration in cisplatin sensitivity, we have employed wild-type and mitochondrial DNA depleted Rho0 yeast cells. Materials and Methods: Wild type and Rho0 yeast cultured in fermentable and non-fermentable sugar containing media, were studied for their sensitivity against cisplatin by monitoring growth curves, oxygen consumption, pH changes ...
متن کاملSaccharomyces cerevisiae var. boulardii as a eukaryotic probiotic and its therapeutic functions
Fuller, in 1989, described probiotic microorganisms as “a live microbial feed supplement,which beneficially affects the host animal, by improving its intestinal microbial balance”.Saccharomyces cerevisiae var. boulardii (S.boulardii) is an accurate probiotic yeast idol.The detection and budding of S.boulardiiis firmly related to the impression of healthinessto promote microorganisms from foodst...
متن کامل