Detection of Anomalous Mailing Behavior Using Novel Data Mining Approaches
نویسندگان
چکیده
The paper presents a novel method for detecting anomalous mailing behavior based on data mining approaches. Known or unknown email viruses may cause anomalous behaviors. Such behavior can be measured by deviations from a user’s normal behavior. Grouping and association analysis are used to establish a normal user profile. The building process is divided into two stages first, group relation analysis and second, dependence relation analysis. Only group relationship analysis or both analyses may be selected, depending on the amount of data available to solve real problems. Bulk amounts of SENDMAIL log data are analyzed and virus behavior simulated. Empirical results indicate that this method of detecting anomalous mailing behavior, based on data mining, is highly accurate. A prototype system has also been designed and constructed.
منابع مشابه
A Study to Improve the Response in Email Campaigning by Comparing Data Mining Segmentation Approaches in Aditi Technologies
Email marketing is increasingly recognized as an effective Internet marketing tool. In this study, a questionnaire is constructed and distributed to a sample of 146 prospects of Aditi Technologies to find the factors associated with higher response rates. The collected data is analyzed using Factor Analysis and the 11 factors, From Line, Subject Line, Personalization of the subject line, Timing...
متن کاملFormation interface detection using Gamma Ray log: A novel approach
There are two methods for identifying formation interface in oil wells: core analysis, which is a precise approach but costly and time consuming, and well logs analysis, which petrophysists perform, which is subjective and not completely reliable. In this paper, a novel coupled method was proposed to detect the formation interfaces using GR logs. Second approximation level (a2) of GR log gained...
متن کاملLatent Variable Mining with Its Applications to Anomalous Behavior Detection
In this paper, we propose a new approach to anomaly detection by looking at the latent variable space to make the first step toward latent anomaly detection. Most conventional approaches to anomaly detection are concerned with tracking data which are largely deviated from the ordinary pattern. In this paper, we are instead concerned with the issue of how to track changes happening in the latent...
متن کاملAnomaly detection using fuzzy association rules
Data mining techniques are a very important tool for extracting useful knowledge from databases. Recently, some approaches have been developed for mining novel kinds of useful information, such as anomalous rules. These kinds of rules are a good technique for the recognition of normal and anomalous behaviour, that can be of interest in several area domains such as security systems, financial da...
متن کاملAnomaly detection in data represented as graphs
An important area of data mining is anomaly detection, particularly for fraud. However, little work has been done in terms of detecting anomalies in data that is represented as a graph. In this paper we present graph-based approaches to uncovering anomalies in domains where the anomalies consist of unexpected entity/relationship alterations that closely resemble non-anomalous behavior. We have ...
متن کامل