An Interactive Machine Learning Framework

نویسندگان

  • Teng Lee
  • James Johnson
  • Steve Cheng
چکیده

Machine learning (ML) is believed to be an effective and efficient tool to build reliable prediction model or extract useful structure from an avalanche of data. However, ML is also criticized by its difficulty in interpretation and complicated parameter tuning. In contrast, visualization is able to well organize and visually encode the entangled information in data and guild audiences to simpler perceptual inferences and analytic thinking. But large scale and high dimensional data will usually lead to the failure of many visualization methods. In this paper, we close a loop between ML and visualization via interaction between ML algorithm and users, so machine intelligence and human intelligence can cooperate and improve each other in a mutually rewarding way. In particular, we propose ”transparent boosting tree (TBT)”, which visualizes both the model structure and prediction statistics of each step in the learning process of gradient boosting tree to user, and involves user’s feedback operations to trees into the learning process. In TBT, ML is in charge of updating weights in learning model and filtering information shown to user from the big data, while visualization is in charge of providing a visual understanding of ML model to facilitate user exploration. It combines the advantages of both ML in big data statistics and human in decision making based on domain knowledge. We develop a user friendly interface for this novel learning method, and apply it to two datasets collected from real applications. Our study shows that making ML transparent by using interactive visualization can significantly improve the exploration of ML algorithms, give rise to novel insights of ML models, and integrates both machine and human intelligence.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Online Learning for Interactive Statistical Machine Translation

State-of-the-art Machine Translation (MT) systems are still far from being perfect. An alternative is the so-called Interactive Machine Translation (IMT) framework. In this framework, the knowledge of a human translator is combined with a MT system. The vast majority of the existing work on IMT makes use of the well-known batch learning paradigm. In the batch learning paradigm, the training of ...

متن کامل

Coactive Learning for Interactive Machine Translation

Coactive learning describes the interaction between an online structured learner and a human user who corrects the learner by responding with weak feedback, that is, with an improved, but not necessarily optimal, structure. We apply this framework to discriminative learning in interactive machine translation. We present a generalization to latent variable models and give regret and generalizati...

متن کامل

Interactive machine learning using BIDMach

Machine learning is growing in importance in industry, the sciences, and many other fields. In many and perhaps most of these applications, users need to trade off competing goals and build different model prototypes rapidly, which requires much human intelligence and is time consuming. Therefore, interactive customization and optimization aims to help expert incorporate secondary criteria into...

متن کامل

Towards Interactive Relational Reinforcement Learning of Concepts

We present a framework for the interactive machine learning of denotational concept semantics in communication between humans and artificial agents. The capability of software agents and robots to learn how to communicate verbally with human users is obviously highly useful in several real-world applications. Whereas the large majority of existing approaches to the machine learning of word sens...

متن کامل

Real-time Scheduling of a Flexible Manufacturing System using a Two-phase Machine Learning Algorithm

The static and analytic scheduling approach is very difficult to follow and is not always applicable in real-time. Most of the scheduling algorithms are designed to be established in offline environment. However, we are challenged with three characteristics in real cases: First, problem data of jobs are not known in advance. Second, most of the shop’s parameters tend to be stochastic. Third, th...

متن کامل

A Framework for Integration of Machine Learning and Knowledge Acquisition Techniques

The fields of knowledge acquisition and machine learning share a major common goal, namely the creation and refinement of knowledge-based expert systems. Yet substantial barriers exist to substantial cross-fertilization between these two active research subfields. The major purpose of this paper is the presentation of a framework to allow large-scale interaction and cooperation between knowledg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1610.05463  شماره 

صفحات  -

تاریخ انتشار 2016