The Spectrum and Isometric Embeddings of Surfaces of Revolution

نویسنده

  • MARTIN ENGMAN
چکیده

An upper bound on the first S invariant eigenvalue of the Laplacian for S invariant metrics on S is used to find obstructions to the existence of isometric embeddings of such metrics in (R, can). As a corollary we prove: If the first four distinct eigenvalues have even multiplicities then the surface of revolution cannot be isometrically embedded in (R, can). This leads to a generalization of a classical result in the theory of surfaces.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Spectrum and Isometric Embeddings of Surfaces of Revolution For Gus and Sonia

A sharp upper bound on the first S invariant eigenvalue of the Laplacian for S invariant metrics on S is used to find obstructions to the existence of S equivariant isometric embeddings of such metrics in (R, can). As a corollary we prove: If the first four distinct eigenvalues have even multiplicities then the metric cannot be equivariantly, isometrically embedded in (R, can). This leads to ge...

متن کامل

Covers and the Curve Complex

We propose a program of studying the coarse geometry of combinatorial moduli spaces of surfaces by classifying the quasi-isometric embeddings between them. We provide the first non-trivial examples of quasi-isometric embeddings between curve complexes. These are induced either via orbifold coverings or by puncturing a closed surface. As a corollary, we give new quasiisometric embeddings between...

متن کامل

The inverse spectral problem for surfaces of revolution

We prove that isospectral simple analytic surfaces of revolution are isometric. 0 Introduction This article is concerned with the inverse spectral problem for metrics of revolution on S. We will assume that our metrics are real analytic and belong to a class R∗ of rotationally invariant metrics which are of ‘simple type’ and which satisfy some generic non-degeneracy conditions (see Definition (...

متن کامل

Local Rigidity of Surfaces in Space Forms

We prove that isometric embeddings of closed, embedded surfaces in R are locally rigid, i.e. they admit no non-trivial local isometric deformations, answering a question in classical differential geometry. The same result holds for abstract surfaces embedded in constant curvature 3-manifolds, provided a mild condition on the fundamental group holds.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008