The Spectrum and Isometric Embeddings of Surfaces of Revolution
نویسنده
چکیده
An upper bound on the first S invariant eigenvalue of the Laplacian for S invariant metrics on S is used to find obstructions to the existence of isometric embeddings of such metrics in (R, can). As a corollary we prove: If the first four distinct eigenvalues have even multiplicities then the surface of revolution cannot be isometrically embedded in (R, can). This leads to a generalization of a classical result in the theory of surfaces.
منابع مشابه
The Spectrum and Isometric Embeddings of Surfaces of Revolution For Gus and Sonia
A sharp upper bound on the first S invariant eigenvalue of the Laplacian for S invariant metrics on S is used to find obstructions to the existence of S equivariant isometric embeddings of such metrics in (R, can). As a corollary we prove: If the first four distinct eigenvalues have even multiplicities then the metric cannot be equivariantly, isometrically embedded in (R, can). This leads to ge...
متن کاملCovers and the Curve Complex
We propose a program of studying the coarse geometry of combinatorial moduli spaces of surfaces by classifying the quasi-isometric embeddings between them. We provide the first non-trivial examples of quasi-isometric embeddings between curve complexes. These are induced either via orbifold coverings or by puncturing a closed surface. As a corollary, we give new quasiisometric embeddings between...
متن کاملThe inverse spectral problem for surfaces of revolution
We prove that isospectral simple analytic surfaces of revolution are isometric. 0 Introduction This article is concerned with the inverse spectral problem for metrics of revolution on S. We will assume that our metrics are real analytic and belong to a class R∗ of rotationally invariant metrics which are of ‘simple type’ and which satisfy some generic non-degeneracy conditions (see Definition (...
متن کاملLocal Rigidity of Surfaces in Space Forms
We prove that isometric embeddings of closed, embedded surfaces in R are locally rigid, i.e. they admit no non-trivial local isometric deformations, answering a question in classical differential geometry. The same result holds for abstract surfaces embedded in constant curvature 3-manifolds, provided a mild condition on the fundamental group holds.
متن کامل