A Surgical Perspective on Quasi-alternating Links
نویسنده
چکیده
We show that quasi-alternating links arise naturally when considering surgery on a strongly invertible L-space knot (that is, a knot that yields an L-space for some Dehn surgery). In particular, we show that for many known classes of L-space knots, every sufficiently large surgery may be realized as the two-fold branched cover of a quasi-alternating link. Consequently, there is considerable overlap between L-spaces obtained by surgery on S3 , and L-spaces resulting as two-fold branched covers of quasi-alternating links. By adapting this approach to certain Seifert fibered spaces, it is possible to give an iterative construction for quasi-alternating Montesinos links.
منابع مشابه
Quasi-alternating Links and Odd Homology: Computations and Conjectures
We present computational results about quasi-alternating knots and links and odd homology obtained by looking at link families in the Conway notation. More precisely, we list quasi-alternating links up to 12 crossings and the first examples of quasi-alternating knots and links with at least two different minimal diagrams, where one is quasi-alternating and the other is not. We provide examples ...
متن کاملHomologically Thin, Non-quasi-alternating Links
We exhibit the first examples of links which are homologically thin but not quasi-alternating. To show that they are not quasi-alternating, we argue that none of their branched double-covers bounds a negative definite 4-manifold with non-torsion H1. Using this method, we also complete the determination of the quasi-alternating pretzel links.
متن کاملOn the Khovanov and Knot Floer Homologies of Quasi-alternating Links
Quasi-alternating links are a natural generalization of alternating links. In this paper, we show that quasi-alternating links are “homologically thin” for both Khovanov homology and knot Floer homology. In particular, their bigraded homology groups are determined by the signature of the link, together with the Euler characteristic of the respective homology (i.e. the Jones or the Alexander pol...
متن کاملS ep 2 00 9 From Goeritz matrices toquasi - alternating links
Knot Theory is currently a very broad field. Even a long survey can only cover a narrow area. Here we concentrate on the path from Goeritz matrices to quasi-alternating links. On the way, we often stray from the main road and tell related stories, especially if they allow as to place the main topic in a historical context. For example, we mention that the Goeritz matrix was preceded by the Kirc...
متن کاملProperties of Closed 3-braids and Other Link Braid Representations
We show that 3-braid links with given (non-zero) Alexander or Jones polynomial are finitely many, and can be effectively determined. We classify among closed 3-braids strongly quasi-positive and fibered ones, and show that 3-braid links have a unique incompressible Seifert surface. We also classify the positive braid words with Morton-Williams-Franks bound 3 and show that closed positive braids...
متن کامل