SA1 and RA receptive fields, response variability, and population responses mapped with a probe array.
نویسندگان
چکیده
Twenty-four slowly adapting type 1 (SA1) and 26 rapidly adapting (RA) cutaneous mechanoreceptive afferents in the rhesus monkey were studied with an array of independently controlled, punctate probes that covered an entire fingerpad. Each afferent had a receptive field (RF) on a single fingerpad and was studied at 73 skin sites (50 mm2). The entire array was lowered to 1.6 mm below the point of initial skin contact (the background indentation) before delivering single-probe indentations. SA1 and RA responses differed in several ways. 1) SA1 RF boundaries were affected much less by indentation depth than were RA boundaries, and the SA1 RF areas were much more uniform in size. The mean SA1 RF area grew from 5.1 to 8.8 mm2 as the indentation depth increased from 50 to 500 microm; the mean RA RF area grew from 5.5 to 22.4 mm2 over the same intensity range. 2) SA1 RFs were more elongated than RA RFs. Elongated RFs were oriented in all directions relative to the skin ridges and the finger axis. 3) SA1 impulse rates were linear functions of indentation depth at all probe locations in the RF; RA responses tended toward saturation beginning at 100 microm indentation depth when the probe was over the HS. Similarities between SA1 and RA responses were that 1) both were extremely repeatable with SDs < 1 impulse per trial and 2) both had population responses (number of impulses) that were nearly linear functions of indentation depth. However, SA1s represented increasing indentation depth by increasing impulse rates in a small, relatively constant group of afferents, whereas the RAs represented increasing indentation depth predominantly by the recruitment of new afferents at a distance.
منابع مشابه
Surround suppression in the responses of primate SA1 and RA mechanoreceptive afferents mapped with a probe array.
Twenty-four slowly adapting type 1 (SA1) and 26 rapidly adapting (RA) cutaneous mechanoreceptive afferents in the rhesus monkey were studied with an array of independently controlled, punctate probes that covered an entire fingerpad. Each afferent had a receptive field (RF) on a single fingerpad and was studied at 73 skin sites (50 mm2). The entire array was lowered to 1.6 to 3.0 mm below the p...
متن کاملThe human thalamic somatic sensory nucleus [ventral caudal (Vc)] shows neuronal mechanoreceptor-like responses to optimal stimuli for peripheral mechanoreceptors.
Although the response of human cutaneous mechanoreceptors to controlled stimuli is well studied, it is not clear how these peripheral signals may be reflected in neuronal activity of the human CNS. We now test the hypothesis that individual neurons in the human thalamic principal somatic sensory nucleus [ventral caudal (Vc)] respond selectively to the optimal stimulus for one of the four mechan...
متن کاملResponses of primary somatosensory cortical neurons to controlled mechanical stimulation.
The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...
متن کاملSpatiotemporal receptive fields of peripheral afferents and cortical area 3b and 1 neurons in the primate somatosensory system.
Neurons in area 3b have been previously characterized using linear spatial receptive fields with spatially separated excitatory and inhibitory regions. Here, we expand on this work by examining the relationship between excitation and inhibition along both spatial and temporal dimensions and comparing these properties across anatomical areas. To that end, we characterized the spatiotemporal rece...
متن کاملEffect of phasic electrical locus coeruleus stimulation on inhibitory and excitatory receptive fields of layer V barrel cortex neurons in male rat
Introduction: It is believed that Locus Coeruleus (LC) influences the sensory information processing. However, its role in cortical surround inhibitory mechanism is not understood. In this experiment, using controlled mechanical displacement of whiskers we investigated the effect of phasic electrical stimulation of LC on response of layer V barrel cortical neurons in anesthetized rat. Methods: ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 81 6 شماره
صفحات -
تاریخ انتشار 1999