Spin-orbit-torque engineering via oxygen manipulation.
نویسندگان
چکیده
Spin transfer torques allow the electrical manipulation of magnetization at room temperature, which is desirable in spintronic devices such as spin transfer torque memories. When combined with spin-orbit coupling, they give rise to spin-orbit torques, which are a more powerful tool for controlling magnetization and can enrich device functionalities. The engineering of spin-orbit torques, based mostly on the spin Hall effect, is being intensely pursued. Here, we report that the oxidation of spin-orbit-torque devices triggers a new mechanism of spin-orbit torque, which is about two times stronger than that based on the spin Hall effect. We thus introduce a way to engineer spin-orbit torques via oxygen manipulation. Combined with electrical gating of the oxygen level, our findings may also pave the way towards reconfigurable logic devices.
منابع مشابه
Spin–torque generator engineered by natural oxidation of Cu
The spin Hall effect is a spin-orbit coupling phenomenon, which enables electric generation and detection of spin currents. This relativistic effect provides a way for realizing efficient spintronic devices based on electric manipulation of magnetization through spin torque. However, it has been believed that heavy metals are indispensable for the spin-torque generation. Here we show that the s...
متن کاملRobust spin-orbit torque and spin-galvanic effect at the Fe/GaAs (001) interface at room temperature
Interfacial spin-orbit torques (SOTs) enable the manipulation of the magnetization through in-plane charge currents, which has drawn increasing attention for spintronic applications. The search for material systems providing efficient SOTs, has been focused on polycrystalline ferromagnetic metal/non-magnetic metal bilayers. In these systems, currents flowing in the non-magnetic layer generate-d...
متن کاملCoherent control of nanomagnet dynamics via ultrafast spin torque pulses
We demonstrate reliable manipulation of the magnetization dynamics of a precessing nanomagnet by precisely controlling the spin transfer torque on the subnanosecond time scale. Using a simple pulse shaping scheme consisting of two ultrafast spin torque pulses with variable amplitudes and delay, we demonstrate coherent control over the precessional orbits and the ability to tune the switching pr...
متن کاملCurrent-induced magnetization switching using an electrically insulating spin-torque generator
Current-induced magnetization switching through spin-orbit torques is the fundamental building block of spin-orbitronics, which promises high-performance, low-power memory and logic devices. The spin-orbit torques generally arise from spin-orbit coupling of heavy metals. However, even in a heterostructure where a metallic magnet is sandwiched by two different insulators, a nonzero spin-orbit to...
متن کاملUltrafast spin exchange-coupling torque via photo-excited charge-transfer processes
Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by eithe...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nature nanotechnology
دوره 10 4 شماره
صفحات -
تاریخ انتشار 2015