Torsionally constrained DNA for single-molecule assays: an efficient, ligation-free method
نویسندگان
چکیده
Controlled twisting of individual, double-stranded DNA molecules provides a unique method to investigate the enzymes that alter DNA topology. Such twisting requires a single DNA molecule to be torsionally constrained. This constraint is achieved by anchoring the opposite ends of the DNA to two separate surfaces via multiple bonds. The traditional protocol for making such DNA involves a three-way ligation followed by gel purification, a laborious process that often leads to low yield both in the amount of DNA and the fraction of molecules that is torsionally constrained. We developed a simple ligation-free procedure for making torsionally constrained DNA via polymerase chain reaction (PCR). This PCR protocol used two 'megaprimers', 400-base-pair long double-stranded DNA that were labelled with either biotin or digoxigenin. We obtained a relatively high yield of gel-purified DNA (∼500 ng/100 µl of PCR reaction). The final construct in this PCR-based method contains only one labelled strand in contrast to the traditional construct in which both strands of the DNA are labelled. Nonetheless, we achieved a high yield (84%) of torsionally constrained DNA when measured using an optical-trap-based DNA-overstretching assay. This protocol significantly simplifies the application and adoption of torsionally constrained assays to a wide range of single-molecule systems.
منابع مشابه
Copper-free click chemistry for attachment of biomolecules in magnetic tweezers
BACKGROUND Single-molecule techniques have proven to be an excellent approach for quantitatively studying DNA-protein interactions at the single-molecule level. In magnetic tweezers, a force is applied to a biopolymer that is anchored between a glass surface and a magnetic bead. Whereas the relevant force regime for many biological processes is above 20pN, problems arise at these higher forces,...
متن کاملIn vitro transcription of a torsionally constrained template.
RNA polymerase (RNAP) and the DNA template must rotate relative to each other during transcription elongation. In the cell, however, the components of the transcription apparatus may be subject to rotary constraints. For instance, the DNA is divided into topological domains that are delineated by rotary locked boundaries. Furthermore, RNAPs may be located in factories or attached to matrix site...
متن کاملImpact of DNA twist accumulation on progressive helical wrapping of torsionally constrained DNA.
DNA wrapping is an important mechanism for chromosomal DNA packaging in cells and viruses. Previous studies of DNA wrapping have been performed mostly on torsionally unconstrained DNA, while in vivo DNA is often under torsional constraint. In this study, we extend a previously proposed theoretical model for wrapping of torsionally unconstrained DNA to a new model including the contribution of D...
متن کاملMonte Carlo implementation of supercoiled double-stranded DNA.
Metropolis Monte Carlo simulation is used to investigate the elasticity of torsionally stressed double-stranded DNA, in which twist and supercoiling are incorporated as a natural result of base-stacking interaction and backbone bending constrained by hydrogen bonds formed between DNA complementary nucleotide bases. Three evident regimes are found in extension versus torsion and force versus ext...
متن کاملUnderwound DNA under tension: structure, elasticity, and sequence-dependent behaviors.
DNA melting under torsion plays an important role in a wide variety of cellular processes. In the present Letter, we have investigated DNA melting at the single-molecule level using an angular optical trap. By directly measuring force, extension, torque, and angle of DNA, we determined the structural and elastic parameters of torsionally melted DNA. Our data reveal that under moderate forces, t...
متن کامل