Do Social Bots Dream of Electric Sheep? A Categorisation of Social Media Bot Accounts

نویسندگان

  • Stefan Stieglitz
  • Florian Brachten
  • Björn Ross
  • Anna-Katharina Jung
چکیده

So-called ‘social bots’ have garnered a lot of attention lately. Previous research showed that they attempted to influence political events such as the Brexit referendum and the US presidential elections. It remains, however, somewhat unclear what exactly can be understood by the term ‘social bot’. This paper addresses the need to better understand the intentions of bots on social media and to develop a shared understanding of how ‘social’ bots differ from other types of bots. We thus describe a systematic review of publications that researched bot accounts on social media. Based on the results of this literature review, we propose a scheme for categorising bot accounts on social media sites. Our scheme groups bot accounts by two dimensions – Imitation of human behaviour and Intent.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On Profiling Bots in Social Media

The popularity of social media platforms such as Twitter has led to the proliferation of automated bots, creating both opportunities and challenges in information dissemination, user engagements, and quality of services. Past works on profiling bots had been focused largely on malicious bots, with the assumption that these bots should be removed. In this work, however, we find many bots that ar...

متن کامل

On-Demand Bot Detection and Archival System

Unusually high correlation in activities among users in social media is an indicator of bot behavior. We have developed a system, called DeBot, that identifies such bots in Twitter network. Our system reports and archives thousands of bot accounts every day. DeBot is an unsupervised method capable of detecting bots in a parameter-free fashion. In February 2017, DeBot has collected over 710K uni...

متن کامل

Real-time Detection of Content Polluters in Partially Observable Twitter Networks

Content polluters, or bots that hijack a conversation for political or advertising purposes are a known problem for event prediction, election forecasting and when distinguishing real news from fake news in social media data. Identifying this type of bot is particularly challenging, with state-of-the-art methods utilising large volumes of network data as features for machine learning models. Su...

متن کامل

Online Human-Bot Interactions: Detection, Estimation, and Characterization

Increasing evidence suggests that a growing amount of social media content is generated by autonomous entities known as social bots. In this work we present a framework to detect such entities on Twitter. We leverage more than a thousand features extracted from public data and meta-data about users: friends, tweet content and sentiment, network patterns, and activity time series. We benchmark t...

متن کامل

Measuring bot and human behavioral dynamics

Bots, social media accounts controlled by software rather than by humans, have recently been under the spotlight for their association with various forms of online manipulation. To date, much work has focused on social bot detection, but little attention has been devoted to the characterization and measurement of the behavior and activity of bots, as opposed to humans’. Over the course of the y...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.04044  شماره 

صفحات  -

تاریخ انتشار 2017