Polyethylene-oxide improves microcirculatory blood flow in a murine hemorrhagic shock model.

نویسندگان

  • Min Feng
  • Yuan Tian
  • Siyuan Chang
  • Daqian Xu
  • Huijuan Shi
چکیده

BACKGROUND Polyethylene oxide (PEO) is a synthetic polymer commonly used in medicine production to reduce toxicity. In the present study, we assessed whether PEO can have a functional effect on improving microcirculatory blood flow after hemorrhagic shock in an animal model. METHODS Hemorrhagic shock (HS) was introduced in 78 C57BL/6 mice, which were then equally divided into two groups. One group of mice was intravenously injected with PEO (diluted in Ringer's solution (RS), PH = 7.4), and the other with RS only. The parameters of microcirculatory hemodynamics, arterial blood gas analysis and multi-organ functions were compared between two groups, 0, 3, 12 and 24 hours after resuscitation. RESULTS After HS, the hemodynamics, including microvascular diameter, red blood cell velocity, and blood flow rates were significantly improved in time-dependent manners in PEO treated mice. Most parameters of arterial blood gas analysis, except PCO2, were also significantly improved by PEO. Multi-organ immunohistochemistry demonstrated that congestions and inflammatory responses in liver and lung were markedly ameliorated by PEO. CONCLUSIONS Our results demonstrated that PEO infusion could effectively improve microcirculation after hemorrhagic shock and increase the chance of survival in animal models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Blood components are essential to regulate microcirculatory blood flow

We read with interest the article by Jacob and colleagues [1] on the regulation of microcirculatory blood flow. In our opinion, the authors missed an important parameter, i.e., blood components and, particularly, red blood cells (RBC). This is regrettable since blood composition is the main parameter that we can influence by our therapies (fluid resuscitation, blood or albumin transfusion) in s...

متن کامل

The coherence of macrocirculation, microcirculation, and tissue metabolic response during nontraumatic hemorrhagic shock in swine

Hemorrhagic shock is clinically observed as changes in macrocirculatory indices, while its main pathological constituent is cellular asphyxia due to microcirculatory alterations. The coherence between macro- and microcirculatory changes in different shock states has been questioned. This also applies to the hemorrhagic shock. Most studies, as well as clinical situations, of hemorrhagic shock in...

متن کامل

Microcirculatory perfusion shows wide inter-individual variation and is important in determining shock reversal during resuscitation in a porcine experimental model of complex traumatic hemorrhagic shock

BACKGROUND Traumatic hemorrhagic shock (THS) is a leading cause of preventable death following severe traumatic injury. Resuscitation of THS is typically targeted at blood pressure, but the effects of such a strategy on systemic and microcirculatory flow remains unclear. Failure to restore microcirculatory perfusion has been shown to lead to poor outcomes in experimental and clinical studies. S...

متن کامل

Effects of different types of fluid resuscitation for hemorrhagic shock on splanchnic organ microcirculation and renal reactive oxygen species formation.

INTRODUCTION Fluid resuscitation is an indispensable procedure in the acute management of hemorrhagic shock for restoring tissue perfusion, particularly microcirculation in splanchnic organs. Resuscitation fluids include crystalloids, hypertonic saline (HTS), and synthetic colloids, and their selection affects the recovery of microcirculatory blood flow and reactive oxygen species (ROS) formati...

متن کامل

Protective role of endogenous carbon monoxide in hepatic microcirculatory dysfunction after hemorrhagic shock in rats.

Maintenance of hepatic microcirculatory flow after ischemia of the liver is essential to prevent hepatic dysfunction. Thus, we determined the differential role of carbon monoxide (CO) and nitric oxide (NO) in the intrinsic control of sinusoidal perfusion, mitochondrial redox state, and bile production in the isolated perfused rat liver after hemorrhagic shock. Administration of tin protoporphyr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of clinical and experimental medicine

دوره 8 4  شماره 

صفحات  -

تاریخ انتشار 2015