Sensitivity studies on the impacts of Tibetan Plateau snowpack pollution on the Asian hydrological cycle and monsoon climate

نویسندگان

  • Y. Qian
  • M. G. Flanner
  • L. R. Leung
چکیده

The Tibetan Plateau (TP) has long been identified to be critical in regulating the Asian monsoon climate and hydrological cycle. In this modeling study a series of numerical experiments with a global climate model are designed to simulate radiative effect of black carbon (BC) and dust in snow, and to assess the relative impacts of anthropogenic CO2 and carbonaceous particles in the atmosphere and snow on the snowpack over the TP and subsequent impacts on the Asian monsoon climate and hydrological cycle. Simulations results show a large BC content in snow over the TP, especially the southern slope. Because of the high aerosol content in snow and large incident solar radiation in the low latitude and high elevation, the TP exhibits the largest surface radiative flux changes induced by aerosols (e.g. BC, Dust) in snow compared to any other snow-covered regions in the world. Simulation results show that the aerosol-induced snow albedo perturbations generate surface radiative flux changes of 5–25 W m−2 during spring, with a maximum in April or May. BC-in-snow increases the surface air temperature by around 1.0 C averaged over the TP and reduces spring snowpack over the TP more than pre-industrial to present CO2 increase and carbonaceous particles in the atmosphere. As a result, runoff increases during late winter and early spring but decreases during late spring and early summer (i.e. a trend toward earlier melt dates). The snowmelt efficacy, defined as the snowpack reduction per unit degree of warming induced by the forcing agent, is 1–4 times larger for BC-in-snow than CO2 increase during April–July, indicating that BC-in-snow more efficiently accelerates snowmelt because the increased net solar radiation induced by reduced albedo melts the snow more efficiently than snow melt due to warming in the air. Correspondence to: Y. Qian ([email protected]) The TP also influences the South (SAM) and East (EAM) Asian monsoon through its dynamical and thermal forcing. Simulation results show that during boreal spring aerosols are transported by southwesterly, causing some particles to reach higher altitude and deposit to the snowpack over the TP. While BC and Organic Matter (OM) in the atmosphere directly absorb sunlight and warm the air, the darkened snow surface polluted by BC absorbs more solar radiation and increases the skin temperature, which warms the air above through sensible heat flux. Both effects enhance the upward motion of air and spur deep convection along the TP during the pre-monsoon season, resulting in earlier onset of the SAM and increase of moisture, cloudiness and convective precipitation over northern India. BC-in-snow has a more significant impact on the EAM in July than CO2 increase and carbonaceous particles in the atmosphere. Contributed by the significant increase of both sensible heat flux associated with the warm skin temperature and latent heat flux associated with increased soil moisture with long memory, the role of the TP as a heat pump is elevated from spring through summer as the land-sea thermal contrast increases to strengthen the EAM. As a result, both southern China and northern China become wetter, but central China (i.e. Yangtze River Basin) becomes drier – a near-zonal anomaly pattern that is consistent with the dominant mode of precipitation variability in East Asia. The snow impurity effects reported in this study likely represent some upper limits as snowpack is remarkably overestimated over the TP due to excessive precipitation. Improving the simulation of precipitation and snowpack will be important for improved estimates of the effects of snowpack pollution in future work. Published by Copernicus Publications on behalf of the European Geosciences Union. 1930 Y. Qian et al.: Tibetan Plateau snowpack pollution on the Asian hydrological cycle

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Monitoring and Modeling the Tibetan Plateau’s climate system and its impact on East Asia

The Tibetan Plateau is an important water source in Asia. As the "Third Pole" of the Earth, the Tibetan Plateau has significant dynamic and thermal effects on East Asian climate patterns, the Asian monsoon process and atmospheric circulation in the Northern Hemisphere. However, little systematic knowledge is available regarding the changing climate system of the Tibetan Plateau and the mechanis...

متن کامل

Snowpack Radiative Heating: Influence on Tibetan Plateau Climate

Solar absorption decays exponentially with depth in snowpacks. However, most climate models constrain all snowpack absorption to occur uniformly in the top-most snow layer. We show that 20–45% of solar absorption by deep snowpacks occurs more than 2 cm beneath the surface. Accounting for vertically-resolved solar heating alters steady-state snow mass without changing bulk snow albedo, and ice-a...

متن کامل

Astronomical and Hydrological Perspective of Mountain Impacts on the Asian Summer Monsoon

The Asian summer monsoon has great socioeconomic impacts. Understanding how the huge Tibetan and Iranian Plateaus affect the Asian summer monsoon is of great scientific value and has far-reaching significance for sustainable global development. One hypothesis considers the plateaus to be a shield for monsoon development in India by blocking cold-dry northerly intrusion into the tropics. Based o...

متن کامل

Premonsoon aerosol characterization and radiative effects over the IndoGangetic Plains: Implications for regional climate warming

[1] The Himalayas have a profound effect on the South Asian climate and the regional hydrological cycle, as it forms a barrier for the strong monsoon winds and serves as an elevated heat source, thus controlling the onset and distribution of precipitation during the Indian summer monsoon. Recent studies have suggested that radiative heating by absorbing aerosols, such as dust and black carbon o...

متن کامل

Orographic Controls on Climate and Paleoclimate of Asia: Thermal and Mechanical Roles for the Tibetan Plateau

Prevailing opinion assigns the Tibetan Plateau a crucial role in shaping Asian climate, primarily by heating of the atmosphere over Tibet during spring and summer. Accordingly, the growth of the plateau in geologic time should have written a signature on Asian paleoclimate. Recent work on Asian climate, however, challenges some (not all) of these views. The high Tibetan Plateau may affect the S...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011