Edge-Orthogonal Patches through a Given Rational Bézier Curve

نویسندگان

  • Johann Lang
  • Hans-Peter Schröcker
چکیده

Applications in computational fluid dynamics (CFD) have led to the problem of finding a rational Bézier patch with a given edge parameter line k the way that the parameter lines of the other type intersect k orthogonally. This is what we call an ‘orthogonal continuation of k’. The variety of solutions to the problem is being investigated and a very geometric way for the construction of the solutions is being offered. Using some fundamental features of polynomials we can establish a link between the properties of the weight polynomial and the elevation of degree which is necessary to find non-trivial orthogonal continuations. For some cases which turn out to be unsolvable, and for cases where the solution existing has a very high degree, we can describe a Monte Carlo method providing surprisingly good approximations. This method is even capable of coping with tasks where the right angle is replaced by some arbitrary angle function.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Bézier patches on almost toric surfaces

The paper is devoted to the parametrization extension problem: given a loop composed of 3 (resp. 4) rational Bézier curves on a rational surface X, find a triangular (resp. tensor product) Bézier patch on X of optimal degree bounded by these curves. The constructive solution to the formulated problem is presented in details for cases where X is a sphere or a hyperbolic paraboloid. Then X is an ...

متن کامل

Conversion of biquadratic rational Bézier surfaces into patches of particular Dupin cyclides: the torus and the double sphere

Toruses and double spheres are particular cases of Dupin cyclides. In this paper, we study the conversion of rational biquadratic Bézier surfaces into Dupin cyclide patches. We give the conditions that the Bézier surface should satisfy to be convertible, and present a new conversion algorithm to construct the torus or double sphere patch corresponding to a given Bézier surface, some conversion ...

متن کامل

Subdivision Algorithms and Convexity Analysis for Rational Bézier Triangular Patches

Triangular surfaces are important because in areas where the geometry is not similar to rectangular domain, the rectangular surface patch will collapse into a triangular patch. In such a case, one boundary edge may collapse into a boundary vertex of the patch, giving rise to geometric dissimilarities (e.g. shape parameters, Gaussian curvature distribution, cross boundary continuities etc.) and ...

متن کامل

Rational Bézier Formulas with Quaternion and Clifford Algebra Weights

We consider Bézier-like formulas with weights in quaternion and geometric (Clifford) algebra for parametrizing rational curves and surfaces. The simplest non-trivial quaternionic case of bilinear formulas for surface patches is studied in detail. Such formulas reproduce well known biquadratic parametrizations of principal Dupin cyclide patches, and are characterized in general as special Darbou...

متن کامل

Approximating rational triangular Bézier surfaces by polynomial triangular Bézier surfaces

An attractive method for approximating rational triangular Bézier surfaces by polynomial triangular Bézier surfaces is introduced. The main result is that the arbitrary given order derived vectors of a polynomial triangular surface converge uniformly to those of the approximated rational triangular Bézier surface as the elevated degree tends to infinity. The polynomial triangular surface is con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998