Increased Calcium Content and Inhomogeneity of Mineralization Render Bone Toughness in Osteoporosis: A Study Focusing on the Mineralization, Morphology and Biomechanics of Human Single Trabeculae

ثبت نشده
چکیده

Introduction: Numerous factors are considered to determine human bone quality. Particularly, volumetrically evaluated bone mineral density (DXABMD) as well as the mechanical properties of bone samples serve to assess fracture risks. However, the differentiation and degree of mineral content and/or morphology effects on bone toughness remained to a large extent unanswered due to large measuring fields containing several micro-architectural particularities (force transfer, trajectories, microcallus). Therefore, the combined analyses of three-point-bending tests and bone mineral density distribution (BMDD) were performed on single trabeculae as the least basic component of cancellous bone – to evaluate the respective effects of mineralization and morphology in terms of bone quality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cadmium treatment of rats caused impairment of osteogenic potential of bone marrow mesenchymal stem cells: a possible mechanism of cadmium related osteoporosis

Background: The mechanism of cadmium induced osteoporosis is not well understood, so in this study, we examined the toxicity of bone marrow mesenchymal stem cell (MSCs) following treatment of rats with CdCl2 in drinking water, to revile the effect of this chemical on differentiation potential of MSCs. Methods: At the end of third passage, MSCs were grown in the osteogenic medium for 21 days....

متن کامل

Osteogenic Differentiation and Mineralization on Compact Multilayer nHA-PCL Electrospun Scaffolds in a Perfusion Bioreactor

Background: Monolayer electrospun scaffolds have already been used in bone tissue engineering due to their high surface-to-volume ratio, interconnectivity, similarity to natural bone extracellular matrix (ECM), and simple production. Objectives: The aim of this study was to evaluate the dynamic culture effect on osteogenic differentiation and mineralizationi into a compact cellular multilayer ...

متن کامل

Sodium Arsenite Caused Mineralization Impairment in Rat Bone Marrow Mesenchymal Stem Cells Differentiating to Osteoblasts

ABSTRACT Background: Sodium arsenite (SA) recently has been recommended to be used in malignancy therapy. Our studies showed, SA in short and long period of treatment caused reduction of rats Bone Marrow Mesenchymal Stem Cells (MSCs) viability and induced caspase dependent apoptosis. The aim of this study was to investigate the effect of SA on osteogenic differentiation of MSCs. Methods: MSCs...

متن کامل

Para-Nonylphenol Impairs Osteogenic Differentiation of Rat Bone Marrow Mesenchymal Stem Cells by Influencing the Osteoblasts Mineralization

Objective(s)Para-Nonylphenol (p-NP) is used in many industries and our previous study showed that p-NP causes a reduction in rats bone marrow mesenchymal stem cells (MSCs) viability. The aim of this study was to investigate the effect of p-NP on osteogenic differentiation of MSCs.Materials and MethodsMSCs were isolated and expanded to 3rd passage, then cultured in DMEM supplemented with osteoge...

متن کامل

Bone material properties and mineral matrix contributions

The strength of bone is related to its mass and geometry, but also to the physical properties of the tissue itself. Bone tissue is composed primarily of collagen and mineral, each of which changes with age, and each of which can be affected by pharmaceutical treatments designed to prevent or reverse the loss of bone. With age, there is a decrease in collagen content, which is associated with an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009