Uplift, Shortening, and Steady State Topography in Active Mountain Belts

نویسندگان

  • SEAN D. WILLETT
  • NIELS HOVIUS
چکیده

We present a tectonic, surface process model used to investigate the role of horizontal shortening in convergent orogens and the effects on steady-state topography. The tectonic model consists of a specified velocity field for the Earth’s surface and includes a constant uplift rate and a constant horizontal strain rate which varies to reflect the relative importance of frontal accretion and underplating in an orogenic wedge. The surface process model includes incision of a network of rivers formed by collection of applied precipitation and diffusive hillslope mass transfer. Three non-dimensional parameters describe this model: a ratio of the maximum horizontal velocity to the vertical velocity, a Peclet number expressing the efficiency of the hillslope diffusion relative to the uplift rate, and a fluvial “erosion number” reflecting the fluvial incision efficiency relative to the uplift rate. A series of models are presented demonstrating the resultant steady-state landforms parameterized by these three numbers. A finite velocity ratio results in an asymmetric form to the model mountain range, although the magnitude of the asymmetry also depends on the Peclet number. Topographic steady-state is achieved faster for models with no horizontal component to the velocity field. With finite horizontal velocity, topographic steady state is achieved only at the scale of the entire mountain range; even the first order drainage basins are unstable with time in the presence of horizontal shortening. We compare our model results to topographic profiles from active mountain ranges in Taiwan, New Zealand, and the Olympic Mountains of Washington state. All these examples exhibit asymmetric topographic form with the asymmetry consistent with the polarity of subduction, suggesting that horizontal tectonic motion is affecting the macro-geomorphic form of these ranges.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

the influence of climate on the tectonic evolution of mountain belts

In the mid‐1980s, advances in understanding the mechanics of the fold‐and‐thrust belts that flank many collisional mountain ranges set the stage for a fundamental change in our appreciation of the role of erosion in the tectonic evolution of mountain ranges. A combination of sandbox experiments, analytical treatments of stress state and field observations showed that fold‐and‐thrust belts form ...

متن کامل

Slope Distributions, Threshold Hillslopes, and Steady-state Topography

Digital elevation models of two “steady-state” mountain ranges, the Olympic Mountains (OM) and Oregon Coast Range (OCR), are used to examine relationships between slope distributions, the development of threshold hillslopes, and steady-state topography. Plots of drainage area versus slope for these mountain ranges exhibit substantial scatter that complicates comparison of range form to analytic...

متن کامل

Steady, balanced rates of uplift and erosion of the Santa Monica Mountains, California

Topographic change in regions of active deformation is a function of rates of uplift and denudation. The rate of topographic development and change of an actively uplifting mountain range, the Santa Monica Mountains, southern California, was assessed using landscape attributes of the present topography, uplift rates and denudation rates. Landscape features were characterized through analysis of...

متن کامل

Rise of the Andes.

The surface uplift of mountain belts is generally assumed to reflect progressive shortening and crustal thickening, leading to their gradual rise. Recent studies of the Andes indicate that their elevation remained relatively stable for long periods (tens of millions of years), separated by rapid (1 to 4 million years) changes of 1.5 kilometers or more. Periodic punctuated surface uplift of moun...

متن کامل

The influence of piedmont deposition on the time scale of mountain-belt denudation

[1] The linear correlation between modern sediment yields and mean drainage-basin elevation suggests that mountainbelt topography is denuded exponentially with a time scale of approximately 50 Myr following the cessation of active uplift. Some Paleozoic orogens, however, still exist as highelevation terrain. Here I explore this paradox within the broader question of what variables control the d...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2001