Partitioning of differently sized poly(ethylene glycol)s into OmpF porin.
نویسندگان
چکیده
To understand the physics of polymer equilibrium and dynamics in the confines of ion channel pores, we study partitioning of poly(ethylene glycol)s (PEGs) of different molecular weights into the bacterial porin, OmpF. Thermodynamic and kinetic parameters of partitioning are deduced from the effects of polymer addition on ion currents through single OmpF channels reconstituted into planar lipid bilayer membranes. The equilibrium partition coefficient is inferred from the average reduction of channel conductance in the presence of PEG; rates of polymer exchange between the pore and the bulk are estimated from PEG-induced conductance noise. Partition coefficient as a function of polymer weight is best fitted by a "compressed exponential" with the compression factor of 1.65. This finding demonstrates that PEG partitioning into the OmpF channel pore has sharper dependence on polymer molecular weight than predictions of hard-sphere, random-flight, or scaling models. A 1360-Da polymer separates regimes of partitioning and exclusion. Comparison of its characteristic size with the size of a 2200-Da polymer previously found to separate these regimes for the alpha-toxin shows good agreement with the x-ray structural data for these channels. The PEG-induced conductance noise is compatible with the polymer mobility reduced inside the OmpF pore by an order of magnitude relatively to its value in bulk solution.
منابع مشابه
Electrocatalytic Oxidation of Ethanol and Ethylene Glycol onto Poly (o-Anisidine)-Nickel Composite Electrode
In this work, poly (o-Anisidine) (POA) was prepared by consecutive potential cycling in an acidic monomer solution at the surface of Carbon Paste Electrode (CPE). Nickel ions were dispersed into the polymer by immersing the electrode in NiSO4 solution. The prepared Ni/POA/CPE was characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, Atomic Force Mic...
متن کاملStudy of Surface Tension of Binary Mixtures of Poly (Ethylene Glycol) in Water and Poly (Propylene Glycol) in Ethanol and its Modeling Using Neural Network
متن کامل
Aqueous two-phase poly (ethylene glycol) – Maltodextrin system for protein partitioning from shrimp waste: Influence of molecular weight and pH
The polysaccharide maltodextrin (Mdx) can provide a low cost alternative to substitute the fractioned dextran for the use with polyethylene glycol (PEG) in aqueous two-phase polymer polymers systems. Aqueous two-phase system (ATPS) partitioning has been used to recover and concentrate proteins from Shrimp Waste and offers many advantages along with biomass removal. In this work we have studied ...
متن کاملCrystal structures of the OmpF porin: function in a colicin translocon.
The OmpF porin in the Escherichia coli outer membrane (OM) is required for the cytotoxic action of group A colicins, which are proposed to insert their translocation and active domains through OmpF pores. A crystal structure was sought of OmpF with an inserted colicin segment. A 1.6 A OmpF structure, obtained from crystals formed in 1 M Mg2+, has one Mg2+ bound in the selectivity filter between...
متن کاملThe Effect of pH on the Liquid-liquid Equilibrium for a System Containing Polyethylene Glycol Di-methyl Ether and Tri-potassium Citrate and its Application for Acetaminophen Separation
In this work liquid-liquid equilibrium for aqueous two phase system composed of polyethylene glycol di-methyl ether and tri-potassium citrate at different medium pH values (6.00, 7.00 and 8.00) and 298.15 K was studied. The obtained results show that two phase area expanded with an increasing of pH values. The performances of the Merchuk and semi-empirical equations were tested in correlating t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biophysical journal
دوره 82 1 Pt 1 شماره
صفحات -
تاریخ انتشار 2002