Identification of catalytic residues in glyoxal oxidase by targeted mutagenesis.
نویسندگان
چکیده
Glyoxal oxidase is a copper metalloenzyme produced by the wood-rot fungus Phanerochaete chrysosporium as an essential component of its extracellular lignin degradation pathways. Previous spectroscopic studies on glyoxal oxidase have demonstrated that it contains a free radical-coupled copper active site remarkably similar to that found in another fungal metalloenzyme, galactose oxidase. Alignment of primary structures has allowed four catalytic residues of glyoxal oxidase to be targeted for site-directed mutagenesis in the recombinant protein. Three glyoxal oxidase mutants have been heterologously expressed in both a filamentous fungus (Aspergillus nidulans) and in a methylotrophic yeast (Pichia pastoris), the latter expression system producing as much as 2 g of protein per liter of culture medium under conditions of high density methanol-induced fermentation. Biochemical and spectroscopic characterization of the mutant enzymes supports structural correlations between galactose oxidase and glyoxal oxidase, clearly identifying the catalytically important residues in glyoxal oxidase and demonstrating the functions of each of these residues.
منابع مشابه
Cloning and characterization of cDNA encoding glyoxal oxidase, a H2O2-producing enzyme from the lignin-degrading basidiomycete Phanerochaete chrysosporium.
Glyoxal oxidase is produced by ligninolytic cultures of the white-rot fungus Phanerochaete chrysosporium and is a source of the extracellular H2O2 that is required by ligninolytic peroxidases. We report here the cloning and characterization of glx-1c cDNA, which encodes glyoxal oxidase. The deduced mature protein has 537 amino acids, a molecular size of 57 kDa, and a pI of 5.1. Five potential N...
متن کاملPhanerochaete chrysosporium glyoxal oxidase is encoded by two allelic variants: structure, genomic organization, and heterologous expression of glx1 and glx2.
A cDNA clone (glx-2c) encoding glyoxal oxidase (GLOX) was isolated from a Phanerochaete chrysosporium lambda gt11 library, and its nucleotide sequence was shown to be distinct from that of the previously described clone glx-1c (P. J. Kersten and D. Cullen, Proc. Natl. Acad. Sci. USA 90:7411-7413, 1993). Genomic clones corresponding to both cDNAs were also isolated and sequenced. overall nucleot...
متن کاملStructure–function characterization reveals new catalytic diversity in the galactose oxidase and glyoxal oxidase family
Alcohol oxidases, including carbohydrate oxidases, have a long history of research that has generated fundamental biological understanding and biotechnological applications. Despite a long history of study, the galactose 6-oxidase/glyoxal oxidase family of mononuclear copper-radical oxidases, Auxiliary Activity Family 5 (AA5), is currently represented by only very few characterized members. Her...
متن کاملStructure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignin-degrading basidiomycete Phanerochaete chrysosporium.
The white rot basidiomycete Phanerochaete chrysosporium produces an array of nonspecific extracellular enzymes thought to be involved in lignin degradation, including lignin peroxidases, manganese peroxidases, and the H2O2-generating copper radical oxidase, glyoxal oxidase (GLX). Preliminary analysis of the P. chrysosporium draft genome had identified six sequences with significant similarity t...
متن کاملIdentification of catalytic residues of pepstatin-insensitive carboxyl proteinases from prokaryotes by site-directed mutagenesis.
Pepstatin-insensitive carboxyl proteinases from Pseudomonas sp. (PCP) and Xanthomonas sp. (XCP) have no conserved catalytic residue sequences, -Asp*-Thr-Gly- (Asp is the catalytic residue) for aspartic proteinases. To identify the catalytic residues of PCP and XCP, we selected presumed catalytic residues based on their high sequence similarity, assuming that such significant sites as catalytic ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 274 51 شماره
صفحات -
تاریخ انتشار 1999