Explicit-Duration Markov Switching Models
نویسنده
چکیده
Markov switching models (MSMs) are probabilistic models that employ multiple sets of parameters to describe different dynamic regimes that a time series may exhibit at different periods of time. The switching mechanism between regimes is controlled by unobserved random variables that form a first-order Markov chain. Explicit-duration MSMs contain additional variables that explicitly model the distribution of time spent in each regime. This allows to define duration distributions of any form, but also to impose complex dependence between the observations and to reset the dynamics to initial conditions. Models that focus on the first two properties are most commonly known as hidden semi-Markov models or segment models, whilst models that focus on the third property are most commonly known as changepoint models or reset models. In this monograph, we provide a description of explicitduration modelling by categorizing the different approaches into three groups, which differ in encoding in the explicit-duration variables different information about regime change/reset boundaries. The approaches are described using the formalism of graphical models, which allows to graphically represent and assess statistical dependence and therefore to easily describe the structure of complex models and derive inference routines. The presentation is intended to be pedagogical, focusing on providing a characterization of the three groups in terms of model structure constraints and inference properties. The monograph is supplemented with a software package that contains most of the models and examples described1. The material presented should be useful to both researchers wishing to learn about these models and researchers wishing to develop them further. S. Chiappa. Explicit-Duration Markov Switching Models. Foundations and Trends © in Machine Learning, vol. 7, no. 6, pp. 803–886, 2014. DOI: 10.1561/2200000054. 1More information about the package is available at www.nowpublishers.com.
منابع مشابه
Fads Models with Markov Switching Hetroskedasticity: decomposing Tehran Stock Exchange return into Permanent and Transitory Components
Stochastic behavior of stock returns is very important for investors and policy makers in the stock market. In this paper, the stochastic behavior of the return index of Tehran Stock Exchange (TEDPIX) is examined using unobserved component Markov switching model (UC-MS) for the 3/27/2010 until 8/3/2015 period. In this model, stock returns are decomposed into two components; a permanent componen...
متن کاملAsymmetric Effects of Monetary Policy and Business Cycles in Iran using Markov-switching Models
This paper investigates the asymmetric effects of monetary policy on economic growth over business cycles in Iran. Estimating the models using the Hamilton (1989) Markov-switching model and by employing the data for 1960-2012, the results well identify two regimes characterized as expansion and recession. Moreover, the results show that an expansionary monetary policy has a positive and statist...
متن کاملEstimating Stock Price in Energy Market Including Oil, Gas, and Coal: The Comparison of Linear and Non-Linear Two-State Markov Regime Switching Models
A common method to study the dynamic behavior of macroeconomic variables is using linear time series models; however, they are unable to explain nonlinear behavior of the series. Given the dependency between stock market and derivatives, the behavior of the underlying asset price can be modeled using Markov switching process properties and the economic regime significance. In this paper, a two-...
متن کاملAsymmetric Effects of Government Spending on Economic Growth Over the Business Cycle: Application of Markov Switching Models
This paper is investigated four subject with uses iranian economic data and using the Markov-Switching model during the period (1369: 3-1393: 4), So that: (a) were Examined impact of the positive and negative Fiscal shocks on Iran economic growth ( B) the Hypothesis impact of negative shocks is greater than a positive shock was tested. (C) were tested the impact of government expenditure (f...
متن کاملExplicit duration modeling for Cantonese connected-digit recognition
This paper describes a study on using explicit duration models in hidden Markov model (HMM) based Cantonese connecteddigit recognition. An HMM does not give explicit control to the temporal structure of speech. As a result, the recognition output may exhibit unreasonable duration pattern, which is often accompanied with the presence of recognition errors. We propose to use a duration model that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Foundations and Trends in Machine Learning
دوره 7 شماره
صفحات -
تاریخ انتشار 2014